
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Recent Advances in Deep Learning Kernel
Optimization Using Large Language Models

Tianlin Li∗†, Chenxi Yang∗‡, Qitong Sun†, Xiaoyu Zhang§, Qiang Hu‡, Zhe Tang¶, Sheng Chen¶, Fei Yang¶,
Aishan Liu†, Xianglong Liu†, Chao Shen∥, Yves Le Traon∗∗, and Yang Liu§
†Beihang University, China, {tianlin001,sunqt,liuaishan,xlliu}@buaa.edu.cn

‡Tianjin University, China, {3023244212,qianghu}@tju.edu.cn
§Nanyang Technological University, Singapore, {xiaoyu.zhang,yangliu}@ntu.edu.sg

¶Zhejiang Lab, China, {tangzhe,scucs,yangf}@zhejianglab.org
∥Xian Jiaotong University, China, chaoshen@mail.xjtu.edu.cn

∗∗University of Luxembourg, Luxembourg, yves.letraon@uni.lu

Abstract—The exponential growth of deep learning models,
especially Large Language Models (LLMs), has dramatically
increased computational demands. To meet these demands, mod-
ern deep learning systems increasingly depend on specialized
hardware accelerators, such as NVIDIA GPUs. The performance
of deep learning workloads ultimately depends on the efficiency
of computational kernels, the fundamental operators underlying
these accelerators. However, these kernels are notoriously difficult
to manually generate and optimize due to complex, hardware-
dependent design constraints. Recent advances in LLMs are
unlocking new opportunities for automated kernel generation
and optimization, offering a compelling alternative to tradi-
tional labor-intensive and expert-driven approaches. This paper
presents the first comprehensive survey of deep learning kernel
generation and optimization using LLMs. Moreover, we provide a
systematic roadmap for improving benchmarking and generation
techniques in this field.

I. INTRODUCTION

THE rapid advancement of deep learning (DL) has dra-
matically intensified the demand for high-performance

computing [1]. To meet this demand, specialized hardware ac-
celerators, including but not limited to NVIDIA GPUs, Huawei
NPUs, and Google TPUs, have emerged as the de facto com-
putational backbone for large-scale workloads [2–4]. These
architectures, designed with massively parallel processing in
mind, now power a wide spectrum of applications, from small-
scale experimental models to cutting-edge large language
models (LLMs) [5–7]. This massive parallel processing capa-
bility is primarily harnessed through DL kernels—programs
that operate on parallel accelerators to perform computations
[8]. As the fundamental operators on these accelerators, the
optimization of DL kernels is critical, directly determining the
overall efficiency of the system.

Although kernels are also a type of program, their genera-
tion and optimization differ from conventional code, present-
ing unique and formidable challenges. The primary difficulty
stems from an immense and complex optimization space
defined by numerous interdependent decisions, including the
configuration of thread block sizes, the intricate utilization

*Equal Contribution.

of memory hierarchies, and the application of low-level in-
structions [9–11]. Furthermore, their performance is highly
dependent on the specific target hardware architecture [12].

The research community has long been engaged in ad-
dressing the complex challenges of DL kernel optimization1.
Earlier approaches rely predominantly on manual tuning [13],
which requires deep domain expertise to navigate a vast and
highly coupled design space and to carefully balance intricate
performance trade-offs among memory hierarchies, parallel
execution models, and hardware-specific constraints, making
manual kernel optimization both costly and difficult to scale.

Recently, the remarkable progress of LLMs has opened
new opportunities for DL kernel optimization. Their strong
capabilities in language understanding and code generation
motivate researchers to explore how these models can assist
in generating and optimizing high-performance kernels [14].
To the best of our knowledge, more than 35 LLM-driven
studies have investigated kernel optimization from diverse
perspectives within a single recent year, reflecting a clear and
accelerating trend toward LLM-based automation.

Despite the rapid advancement and promising capabilities
of LLM-based kernel generation and optimization, there is
currently no systematic and comprehensive study of this
emerging research area. Existing works are largely scattered
across different venues and explore diverse methodological
directions. This underscores the need for a timely survey of
this field. To fill this gap, this survey provides a comprehen-
sive review and comparison of existing methods. We further
analyze open challenges and outline promising future research
directions to guide the continued development of this field.

A. Survey Method

The survey method adopted for preparing this paper is based
on an approach widely presented in previous surveys [15].
This method includes ❶ defining the objectives of the survey,
❷ defining research questions, ❸ selecting keywords for

1For simplicity, we do not distinguish between kernel generation and
optimization. Here, both terms are used interchangeably to denote the process
of generating new kernels.

mailto:tianlin001@buaa.edu.cn,liuaishan@buaa.edu.cn
mailto:3023244212@tju.edu.cn,qianghu@tju.edu.cn
mailto:xiangyu.zhang@ntu.edu.sg,yangliu@ntu.edu.sg
mailto:tangzhe@zhejianglab.org,scucs@zhejianglab.org,yangf@zhejianglab.org
chaoshen@mail.xjtu.edu.cn
mailto:yves.letraon@uni.lu

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Figure 1. The workflow and methodology of this survey.

searching, and ❹ identifying criteria for including or excluding
research. These aspects are defined below.

(1) The objectives of this survey are defined as follows:
O1 Provide the research community with a comprehensive

catalog of DL kernel optimization methods, while tracing
their development over time.

O2 Discuss directions for future research to extend the re-
search on DL kernel optimization.

(2) The research questions in this survey are as follows:
RQ1 How are LLM-based kernel optimization methods cur-

rently evaluated? (response in Section III)
RQ2 How do existing approaches perform kernel optimization

using LLMs? (response in Section IV)
RQ3 What roadmap can guide future research in LLM-based

kernel optimization? (response in Section V)
(3) We considered several major publication platforms,

including the ACM Digital Library, IEEE Xplore, Springer,
ScienceDirect, arXiv, and Google Scholar. The search strategy
employed primary keywords combining GPU/DL kernel (or
operator) with generation (or optimization), supplemented by
additional terms such as performance and system.

(4) The resulting publications were systematically screened
to identify the most relevant works. Initially, a total of 18,199
publications were considered, which were subjected to a pre-
liminary screening based on titles and research fields, followed
by an abstract-level relevance assessment. Duplicated records
were then removed, and the remaining works were further fil-
tered according to publication period to retain only post-LLM
studies. A full-text screening was subsequently conducted to
determine the final set of core papers. To further mitigate
the risk of missing relevant studies, a snowballing search was
performed on the selected core papers to identify additional

candidates. These newly collected works were screened using
the same multi-stage procedure, including abstract-level fil-
tering and full-text examination. Finally, supplementary open-
source repositories and technical blogs were incorporated to
complement the academic literature, resulting in a curated
corpus of 36 works, as illustrated in Figure 1.

The rest of this survey is organized as follows. Section III
reviews existing performance benchmarking methodologies.
Section IV distinguishes between three major kernel op-
timization methodologies: single-agent systems, multi-agent
systems, and training-based approaches, and organizes the
surveyed methods accordingly. Section V outlines a forward-
looking research roadmap, drawing on key insights from
manual kernel optimization efforts in pre-LLM research and
advances in the general code generation domain.

To support reproducibility and facilitate future research, we
also provide a curated GitHub repository that catalogs all
surveyed works and related resources. The repository is pub-
licly accessible at: https://github.com/luckily268/Awesome-
GPU-Kernel-Optimization.

II. BACKGROUND AND PRELIMINARIES

Deep learning is intrinsically characterized by computa-
tionally intensive, massively parallel tensor operations, most
notably large-scale matrix multiplications and convolutions.
This computational paradigm is fundamentally misaligned
with the architecture of general-purpose CPUs, which are
designed primarily for sequential execution, complex control
logic, and low-latency single-thread performance.

To address this architectural gap, specialized hardware ac-
celerators such as GPUs, TPUs, and NPUs have been de-
veloped. Their designs prioritize massive parallelism through

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Table I
CROSS-VENDOR MAPPING OF GPU ARCHITECTURAL TERMINOLOGY

Component NVIDIA AMD Intel

Compute Unit SM (Streaming Multiprocessor) CU (Compute Unit) Xe-core

SIMT/SIMD Execution
Group

Warp (32 threads) Wavefront (64 threads on GC-
N/CDNA; 32/64 on RDNA)

Thread Group (runtime-selected
size; SIMD width 8/16/32)

Scratchpad Memory Shared Memory LDS (Local Data Share) SLM (Shared Local Memory)

Matrix Accelerator Tensor Core (FP8 / FP16 / BF16 /
INT8)

MFMA (Matrix Core) XMX (Xe Matrix Extensions)

Cache Strategy Configurable L1/Shared Memory
partition

Vector L0 + L1 + L2 hierarchy Configurable L1/SLM Cache/S-
RAM partition

thousands of streamlined cores capable of executing identical
operations across large datasets with high efficiency. In the
following, we provide a brief overview of the hardware design
of accelerators and their operating models.

A. Hardware Design of Accelerators

The design of modern hardware accelerators for DL is
primarily organized around two fundamental key dimensions:
the Compute Cores and the Memory Hierarchy. A schematic
of this organization is shown in Figure 2.

The compute cores constitute the parallel arithmetic engines.
While vendor-specific terminology varies (as detailed in Ta-
ble I), such us NVIDIA’s Streaming Multiprocessors (SMs),
AMD’s Compute Units (CUs), and Intel’s Xe-cores, their
underlying execution philosophy converges on a throughput-
first paradigm. This is realized through wide SIMT (Single-
Instruction, Multiple-Threads) or SIMD (Single-Instruction,
Multiple-Data) pipelines, hardware-managed multithreading,
and tightly coupled on-chip storage for thread state. For
instance, an NVIDIA SM executes warps of 32 threads across
its SIMT pipelines; AMD CUs primarily schedule wavefronts
of 64 threads; and Intel Xe-cores employ explicit SIMD vector
engines with thread-group scheduling. Each such unit typically
integrates scalar ALUs (for thread-private operations), wide
vector ALUs, dedicated load/store pipelines, and increasingly,
specialized matrix-multiply accelerators—such as NVIDIA’s
Tensor Cores, AMD’s Matrix Cores (executing MFMA in-
structions), and Intel’s Xe Matrix Extensions (XMX). A
hardware scheduler (warp/wavefront/thread-group scheduler)
dynamically interleaves these thread groups to hide memory-
access latency and maximize functional-unit utilization.

The memory hierarchy serves as the foundational data-
supply architecture designed to meet the immense operand-
throughput demands of parallel compute cores. It is structured
as a multi-tiered system, spanning from high-capacity, high-
bandwidth, yet high-latency off-chip memory (e.g., HBM
or GDDR) down to low-latency, software-managed on-chip
storage such as scratchpad memory (e.g., NVIDIA’s shared
memory, AMD’s LDS, or Intel’s SLM) and dedicated L1
caches. This layered design is essential to amortize the cost
of data movement, facilitate efficient data reuse, and thus
determine the practical fraction of theoretical peak compute
throughput that can be achieved. Consequently, the orches-
tration of data movement across this hierarchy, whether via

cache policies, explicit DMA operations, or compiler-directed
scratchpad allocation, is as critical to overall accelerator per-
formance as the design of the computational units themselves.

Figure 2. GPU architecture overview. The diagram illustrates the two primary
subsystems of a modern GPU. Up: Compute Core Design — The GPU
comprises an array of parallel Streaming Multiprocessors (SMs, also called
Compute Units or Xe-cores) that access off-chip Global Memory via a shared,
unified L2 Cache and Memory Controllers/PHY. Down: Memory Subsystem
within an SM — Each SM contains multiple Warp Schedulers and Dispatch
Units that issue instructions to an Execution Units Pool (with scalar/vector
ALUs and Tensor Cores). Data is supplied through a dedicated on-chip hierar-
chy: the fastest Register File, software-managed Shared Memory/LDS/SLM,
and hardware-managed L0/L1 Caches.

B. Operating Models of Accelerators

The performance of hardware accelerators is largely in-
fluenced by the compute kernels executed on their cores.
These kernels are programmed directly using architecture-
specific, low-level languages and instruction sets. For NVIDIA
GPUs, this involves CUDA C++ and PTX assembly; for AMD
GPUs, HIP C++ and the ROCm toolchain; and for specialized
units like Tensor Cores, vendor-provided intrinsic functions
or microcode-level APIs. Programming at this level grants
experts precise control over thread scheduling, memory access

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

patterns, and execution pipelines, enabling the handcrafted
optimization of kernels that can approach the theoretical peak
throughput of the hardware.

However, developing kernels using such low-level pro-
gramming remains challenging for most practitioners. To
facilitate easier development, modern DL frameworks and
software stacks provide developers with progressively higher-
level programming interfaces for operating hardware, rather
than relying on low-level programming. For better illustration,
we will trace the execution path of a computational operator
through the PyTorch stack on a CUDA-capable GPU. The
following dissects this stack layer by layer, showing how a
user’s Python code is transformed, optimized, and ultimately
executed as efficient, hardware-native kernels.

The typical execution path for an operator through this
stack can be broken down into four stages: ❶ Python API
Invocation, where the user’s operator call is captured; ❷ C++
ATen Dispatching, which dynamically selects the appropriate
backend kernel; ❸ CUDA Kernel Launch, where execution
commands are prepared for the GPU; ❹ GPU Hardware
Execution, where the kernel runs on parallel streaming mul-
tiprocessors. In addition, we illustrate the Triton path as an
alternative execution path extending the traditional ATen flow
for comparison.

1) Python API Invocation: First, developers write Python
scripts that call PyTorch operators, for example:

1 import torch
2

3 # Initialize tensors
4 a = torch.tensor([1.0, 2.0], device='cuda')
5 b = torch.tensor([3.0, 4.0], device='cuda')
6

7 # Element-wise addition on GPU
8 c = a + b

Listing 1. GPU Tensor Operations in PyTorch

When the Python interpreter executes this code, it calls
PyTorch’s Python API. PyTorch’s Python API is bound to the
underlying C++ implementation through PyBind11.

When calling a + b, it actually invokes the __add__
method of the torch.Tensor object, which calls the un-
derlying C++ function through PyBind11.

2) C++ ATen Dispatching: With the C++ function call
and tensor metadata from the previous stage, PyTorch’s ATen
tensor library takes over as the central dispatch engine.
ATen’s role is to dynamically route each tensor operation
under PyTorch’s dynamic execution model to the appropri-
ate low-level kernel implementation, thereby decoupling the
flexible, user-facing Python API from hardware-specific code.
It provides a unified and extensible interface that bridges
PyTorch’s runtime-dynamic graph to a wide range of backend
implementations, including CPU, CUDA, XPU, and ROCm.

When an operation such as a + b arrives from the
Python layer, ATen inspects the tensor metadata, device,
data type, shape, and other attributes, and dynamically dis-
patches the call to the corresponding backend kernel. For
example, for CUDA-resident float tensors, ATen selects the
CUDA-optimized add kernel to execute the actual computa-
tion.

3) Kernel Launch: With the specific kernel function
pointer, device pointers to tensor data, and calculated launch
parameters from the previous stage, ATen calculates the op-
timal GPU thread configuration, including grid dimensions,
thread-block dimensions, and other parameters, then asyn-
chronously launches the kernel through the CUDA runtime.
Specifically, add kernel<<< grid, block, 0, stream>>>,
the CUDA runtime places the kernel launch command and
parameters into the command queue of the specified CUDA
stream, and the CPU immediately returns to continue execu-
tion without waiting for GPU computation to complete.

4) GPU Hardware Execution: Once the kernel launch com-
mand reaches the GPU, its execution follows a fixed hardware
pipeline: Grid and Thread-Block Allocation distributes work to
SMs; Warp Scheduling issues thread groups to hide instruction
latency; Memory Access loads data from the register file,
shared memory, or global memory; Computation Execution
performs arithmetic in CUDA cores or specialized units;
and finally, Result Write-back stores outcomes to designated
memory locations. This structured flow enables the massive
data parallelism that defines GPU acceleration.

While the multi-layered PyTorch stack provides accessible
abstractions that spare most developers from writing CUDA
C++, which is a complex and error-prone process, this conve-
nience comes at the cost of reduced flexibility for fine-grained
kernel optimization. To increase flexibility while maintaining
low development overhead, Triton [16] was introduced as
a high-level, Python-like language specifically designed for
GPU kernel development. Triton provides a more intuitive
and high-level programming interface, allowing developers to
express complex GPU computation patterns without writing
low-level CUDA code. At the same time, it offers fine-grained
control over hardware resources, such as memory hierarchy,
thread/block mapping, and vectorized operations, giving expert
users the ability to tune kernels for maximum performance.
This combination of ease of use and low-level control makes
Triton a particularly promising tool for both rapid prototyping
and performance-critical kernel development.

Specifically, practitioners can write Triton kernels as
valid Python functions, which follow a Python-embedded
domain-specific language (DSL) designed for GPU program-
ming. Practitioners explicitly annotate such functions with
@triton.jit, which registers them with the Triton runtime
as parametric GPU kernel templates rather than executable
Python code. Upon kernel invocation, the Python frontend
extracts tensor metadata, including shapes, strides, data types,
and device information, from the input tensors. This metadata
is used by the Triton compiler to specialize the kernel for a
specific execution configuration. During compilation, Triton
lowers the annotated kernel through a multi-level intermediate
representation (IR) pipeline and instantiates a target backend
(e.g., CUDA or ROCm), applying a sequence of backend-
specific optimization and code-generation passes. The result-
ing PTX code is then JIT-compiled by the GPU driver into
native machine instructions (SASS), which are subsequently
launched for execution on the GPU. The compilation and
execution pipeline can be summarized as:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Triton kernel
Triton Compiler−−−−−−−→ PTX JIT−→ SASS Kernel Launch−−−−−−−→ GPU Execution

C. Efficiency Bottlenecks of Kernels in DL Software Stacks

While frameworks such as PyTorch can automatically gen-
erate and dispatch computational kernels, these default imple-
mentations often fail to achieve peak hardware performance
due to an inherent trade-off between generality and special-
ization. The underlying reasons are multifaceted.

❶ While PyTorch’s automation successfully abstracts hard-
ware complexity and ensures functional correctness, the ker-
nels it employs, typically sourced from vendor libraries like
cuBLAS or generated just-in-time, are designed as general-
purpose implementations. These kernels must support a wide
range of tensor shapes, data types, and hardware variants,
which inherently prevents them from exploiting the full per-
formance potential of any specific workload. For example,
a general matrix multiplication kernel cannot assume fixed
dimensions or memory layouts, and therefore cannot apply
aggressive, shape-specific optimizations such as tailored loop
tiling, unrolling, or memory-access patterns.

❷ Moreover, PyTorch’s dynamic execution model defers
key optimization decisions until runtime, limiting the scope
for deep static analysis and compilation. This constraint stems
from its core design: tensor properties such as shape, data
type, and device are only known during execution, which
prevents the compiler from making aggressive, irreversible
optimizations upfront. For instance, while a matrix multiplica-
tion kernel generated at runtime must accommodate arbitrary
tensor shapes, a pre-optimized kernel can be specialized for
a fixed size, such as 256×256. This specialization enables
compile-time optimizations unavailable in the dynamic path:
explicit orchestration of data movement across the mem-
ory hierarchy (global → shared → registers), fine-tuning of
thread-block and grid dimensions to maximize occupancy and
latency hiding, and precise alignment of data layouts and
instruction sequences to exploit specialized hardware such as
Tensor Cores or Matrix Cores. Consequently, specialized ker-
nels, whether manually engineered or auto-tuned, can achieve
substantially higher hardware utilization for their target work-
loads than the general-purpose kernels dispatched through
PyTorch’s default stack, often translating to measurable, multi-
fold speedups across training and inference pipelines.

The significant performance bottleneck of current general-
purpose computational kernels, which fail to fully exploit the
underlying hardware’s computational potential, has become a
critical limitation in deep learning systems. This persistent gap
has motivated the development of numerous kernel generation
and optimization techniques.

D. Problem Definition

DL kernel generation and optimization aim to automati-
cally produce high-performance compute kernels for a tar-
get tensor computation and to further refine their exe-
cution behavior through schedule- and hardware-level op-
timizations. Given an operator-level specification S (e.g.,

a PyTorch operator, an intermediate representation, or a
natural-language description), the system must (i) generate
a kernel implementation K in a backend language B ∈
{CUDA,Triton,HIP,MLIR-based backends, . . .}, and (ii) op-
timize its schedule, memory hierarchy usage, tiling strat-
egy, parallelization mapping, and compilation parameters to
achieve maximal runtime performance on a target hardware
platform H .

This problem manifests through multiple input–output path-
ways, including but not limited to:

• natural language descriptions → CUDA kernels,
• PyTorch operator specifications (or other high-level tensor

programs) → CUDA kernels,
• PyTorch operator specifications (or other high-level tensor

programs) → Triton kernels.

Formally, DL kernel generation and optimization seek to solve:

K∗ = arg max
K∈G(S,B),
θ∈O(K)

P (K, θ,H), such that K |= S

where:

• G(S,B) is the space of candidate kernel implementations
generated from specification S in backend B,

• O(K) is the optimization space over schedules, tilings,
memory layouts, unrolling factors, launch configurations,
and compiler parameters,

• P (K, θ,H) denotes the performance of kernel K under
optimization parameters θ on hardware H .

E. Requirements for Kernel Optimization Methods

Here, we summarize a set of requirements that kernel
optimization methods are expected to satisfy.
• Functional Correctness. The kernel produced by the kernel
optimization method is expected to be functionally correct.
• Acceleration. The kernel generated by the method should
make full use of hardware accelerators to maximize computa-
tional acceleration.
• Robustness. The kernel generated by the method should
demonstrate stable correctness and performance under edge-
case or challenging settings, including extreme tensor shapes,
atypical data types, and adversarial or rare input distributions.
• Efficiency. Kernel optimization methods should minimize
kernel optimization time overhead.
• Versatility. Kernel optimization methods must handle a
broad range of operators, such as convolution and attention,
along with diverse tensor shapes and numeric data types,
thereby ensuring generalization beyond narrow, handcrafted
examples [17–19].
• Cross-Architecture Portability. Kernel optimization meth-
ods should support multiple hardware architectures and soft-
ware backends with minimal modification.
• Reproducibility. Kernel optimization methods should pro-
duce kernels whose behavior, both correctness and perfor-
mance, is reproducible under well-controlled settings.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

III. EVALUATION

This section addresses RQ1 by systematically reviewing
how to evaluate LLM-based kernel generation methods. In this
section, we first summarize existing benchmarks and metrics
commonly used in the literature, as in Table II and Table III.
We then outline the challenges and present a roadmap.

A. Existing Evaluation Benchmarks

KernelBench [17] and TritonBench [20] initiate the design
of systematic evaluation benchmarks and metrics for assessing
both the functional correctness and acceleration performance
of LLM-generated kernels.

KernelBench establishes a foundational evaluation bench-
mark for CUDA kernel optimization in DL workloads. It
consists of 270 programming tasks spanning multiple difficulty
levels (L1–L4) and adopts the fastp metric, which measures the
proportion of generated kernels that are both functionally cor-
rect and achieve at least p× speedup over PyTorch baselines.

TritonBench focuses on evaluating kernel generation using
the Triton DSL and provides a complementary benchmark
suite of 350 real-world operators curated from GitHub and
PyTorch repositories. It evaluates functional correctness using
Pass@K and measures runtime performance using Speedup
relative to optimized baselines.

However, these initial benchmarks expose several critical
limitations. ❶ They remain confined to NVIDIA’s ecosystem
(CUDA or Triton), leaving other hardware platforms unex-
amined. ❷ They evaluate kernels only on a limited set of
input shapes and configurations, offering little insight into
robustness across diverse workloads and runtime variations.

To overcome these shortcomings, the community soon
proposed two new evaluation benchmarks. MultiKernel-
Bench [18] presented by wen et al. directly targeted the
first limitation of platform specificity. It introduced the first
benchmark supporting kernel generation for multiple back-
ends: CUDA, AscendC (Huawei NPU), and Pallas (Google
TPU). Its core innovation was a modular backend abstraction
layer that decoupled evaluation logic from platform-specific
toolchains, enabling fair comparison across diverse hardware.

Meanwhile, NPUEval [3] establishes a new benchmark
for evaluating LLMs’ ability to generate vectorized kernel
code for NPUs. More than just a dataset, it provides a
complete open-source evaluation harness with cycle-accurate
performance metrics.

Concurrently, the robust-kbench [19] addresses the second
limitation. It evaluates kernel correctness across diverse set-
tings, supports both forward and backward kernel optimiza-
tion, and is designed for realistic downstream applications.

Additionally, the BackendBench framework [21] proposed
by Meta further systematically validate the functional correct-
ness and performance of kernels generated by LLMs in real
deployment. The framework conducts comprehensive func-
tional correctness tests on 271 operators based on TorchBench
and PyTorch’s OpInfo, ensuring consistency with standard
implementations. Meanwhile, using real tensor shapes from
models in Huggingface, it performs performance testing on

124 commonly used operators to evaluate their execution effi-
ciency under practical workloads. Furthermore, BackendBench
introduces a success rate across attempts metric to assess the
stability of the generation process.

B. Challenges in Benchmarking

Kernel generation benchmarking faces multiple challenges
at both the individual kernel level and the benchmark suite
level. Following the requirements outlined in subsection II-E,
we organize these challenges accordingly.

Functional Correctness. Many existing kernel benchmarks
provide reference implementations or fixed input sets to eval-
uate correctness. While these allow basic verification, they
typically cover only a limited range of shapes, data types,
and input distributions. This limited coverage means that
kernels may appear correct under benchmark conditions but
could fail in more diverse or realistic scenarios. Addressing
this limitation is challenging because designing inputs that
comprehensively reflect real workloads is nontrivial.

Acceleration Performance. Existing benchmarks often
measure runtime to evaluate kernel acceleration, but achiev-
ing consistent and reliable measurements is difficult due to
hardware variability, warm-up effects, and differences across
frameworks and backends. These factors can make it hard
to determine whether observed performance improvements
reflect true optimization or are influenced by external con-
ditions. This highlights the need for standardized execution
environments and well-defined measurement protocols, includ-
ing warm-up runs and iteration counts, to ensure reproducible
results.

Robustness. While many benchmarks focus on typical
inputs, kernels must also maintain correctness and stable per-
formance under extreme or rare edge-case scenarios, such as
unusual tensor shapes, atypical data distributions, or boundary
batch sizes. Existing evaluations often overlook these condi-
tions, leaving kernels vulnerable to failures or performance
degradation in challenging situations.

Efficiency. Existing evaluations rarely quantify the effi-
ciency of kernel generation and optimization pipelines, leaving
methods that are slow or resource-intensive insufficiently as-
sessed.

Versatility. Existing benchmarks, such as NPUeval and
ComputeEval, often focus on a limited set of operators, shapes,
and data types. While these benchmarks provide useful snap-
shots of kernel behavior, their narrow scope makes it difficult
to draw general conclusions about performance, correctness,
or robustness across a full spectrum of workloads. This limited
coverage presents a key challenge because kernels may per-
form well on benchmarked operators but fail or underperform
on untested ones.

Cross-Architecture Portability. Many existing benchmarks
are tailored to a single hardware platform, which limits the
ability to compare kernel performance or correctness across
different architectures. This focus on a single platform makes it
challenging to assess whether optimizations generalize beyond
the target hardware, and it reduces the relevance of benchmark
results for broader deployment.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Reproducibility. Many existing benchmarks report results
that can vary significantly depending on execution environ-
ments, framework versions, or hardware configurations. This
variability makes it difficult to reliably compare kernel per-
formance or correctness across experiments and over time,
and it can obscure the true impact of optimization techniques.
Addressing this issue is challenging because even minor
differences in system setup or runtime conditions can affect
outcomes.

C. Roadmap for Advancing Benchmarking

This roadmap outlines strategic directions to improve bench-
mark design.

For functional correctness, benchmarks should move be-
yond fixed or narrowly scoped input configurations and adopt
multi-dimensional validation across diverse tensor shapes,
data types, and initialization schemes. For acceleration per-
formance, benchmarks should emphasize standardized and
reproducible measurement protocols. This includes clearly
defined warm-up procedures, iteration counts, and isolation
of execution environments, so that reported speedups more
accurately reflect genuine optimization effects rather than
artifacts of runtime variability or framework-specific behavior.
For robustness, optimized kernels should be evaluated under
extreme or uncommon conditions, such as irregular tensor
shapes, in order to expose brittle optimization strategies that
perform well only under nominal settings.

For efficiency, evaluation should extend beyond the quality
of the generated kernels themselves to include the cost of the
generation and optimization process. Benchmarks should mea-
sure factors such as generation latency, compilation overhead,
search or iteration budgets, and overall resource consumption,
providing a more realistic assessment of practical usability.
For versatility, benchmarks should expand the diversity of
evaluated kernels by including operators drawn from a wide
range of model families and application domains. Leveraging
real workloads and tensor shapes from modern deep learn-
ing models can help ensure that benchmark results remain
representative as workloads continue to evolve. For cross-
architecture portability, benchmarks should adopt modular
and backend-agnostic designs that enable evaluation across
heterogeneous hardware platforms, including GPUs, NPUs,
and emerging accelerators. Such designs can expose archi-
tectural biases in kernel generation models and encourage
the development of more portable optimization strategies.
For reproducibility, benchmarks should provide open, well-
documented evaluation harnesses and reference environments,
enabling results to be reliably reproduced and compared across
different systems, software stacks, and time periods.

The emergence of more comprehensive benchmarks could
serve both as a testbed for existing methods and as a feedback
mechanism to improve future kernel generation models.

IV. KERNEL GENERATION AND OPTIMIZATION
TECHNIQUES

This section addresses RQ2 by reviewing how existing
approaches perform kernel generation and optimization using

Figure 3. Distribution of LLM-driven GPU kernel generation and optimization
research. Percentages are calculated over the 37 surveyed post-LLM kernel
generation and optimization papers. Works focusing primarily on mobile
systems [4] are excluded from the statistics. KernelBench [17] and AI
CUDA Engineer / robust-kBench [19] span multiple methodological categories
and are therefore counted separately. In addition, partial code releases and
documentation-only resources included in Figure 1 are not considered in this
statistical count.

LLMs. Existing kernel optimization approaches can be broadly
classified into three categories, as shown in Figure 3: single-
agent, multi-agent, and training-based methods. This section
presents a detailed overview of each category. These works
are summarized in Table IV.

A. Single-Agent Systems

The initial wave of research on LLM-driven kernel opti-
mization primarily centered around single-agent systems. The
evolution within this category demonstrates a clear trajectory:
starting from evaluating basic prompting efficacy, integrating
with verifier and profiler, and culminating in reformulating
kernel optimization as a structured optimization problem.

In the early exploration of automated kernel generation
with LLMs, Ouyang et al. [17] introduce KernelBench and
conduct a series of pilot experiments. They first adopt a one-
shot prompting approach and evaluate several state-of-the-art
models, including GPT-4o [23], DeepSeek-R1 [24], and Llama
[25]. The results reveal that even the best models can only out-
perform the PyTorch baseline in fewer than 20% of the tasks
under one-shot generation. While reasoning-enhanced models
exhibit fewer execution errors, they still struggle with func-
tional correctness. When tested across multiple NVIDIA GPU
platforms (L40S, A100, H100, T4, etc.), the performance of
generated kernels varies considerably, indicating limited model
adaptability to hardware-specific characteristics. Subsequently,
they also experiment with feedback-driven optimization and
knowledge-augmented prompting. Their findings demonstrate
that iterative refinement incorporating execution and manual
feedback effectively helps models correct errors and discover
more efficient implementations. When provided with relevant

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Table II
OVERVIEW OF BENCHMARKS FOR LLM-BASED GPU KERNEL GENERATION

Benchmark Institution Date Core Task Dataset Composition Metrics

KernelBench [17] Stanford 2025.02 Torch → CUDA 270 tasks: L1 (100), L2 (100),
L3 (50), L4 (20)

fastp

TritonBench [20] Tianjin Univ. 2025.02 Torch → Triton 350 tasks: GitHub (184), Py-
Torch (166)

Pass@K, Speedup

Compute-eval [22] NVIDIA 2025.04 NL → CUDA 128 programming problems Pass@K

NPUEval [3] AMD 2025.07 NL/Spec → Vectorized
C++ for NPU

102 common ML operators for
AMD NPU

Functional Correctness,
Cycle-accurate,
Vectorization Score

MultiKernel-Bench [18] Nanjing Univ. 2025.07 Torch → Multi-backend 285 operators across CUDA,
AscendC, Pallas

Pass@K,
Compilation@K,
SpeedUpα@K

BackendBench [21] Meta 2025.07 Torch → Triton 271 ops (correctness), 124 ops
(performance)

Correctness, Speedup

robust-kbench [19] Sakana AI 2025.09 Torch → CUDA Tasks with multi-inits, shapes,
forward/backward passes

Correctness, Speedup,
Generalization

Table III
EVALUATION DIMENSIONS COVERAGE ACROSS GPU KERNEL GENERATION BENCHMARKS

Benchmark Functional
Correctness

Acceleration
Performance

Robustness Efficiency Versatility Cross-Architecture
Portability

Reproducibility

KernelBench ✓ ✓ ✓ ✓
TritonBench ✓ ✓ ✓
NPUEval ✓ ✓ ✓ ✓ ✓
MultiKernelBench ✓ ✓ ✓ ✓
robust-kbench ✓ ✓ ✓ ✓

hints, models attempt to employ more advanced optimization
strategies, such as shared memory or tensor core instructions,
though this often increases the risk of compilation and runtime
failures.

Following the agent design in KernelBench, Chen et al. [26]
has developed a new workflow that combines the DeepSeek-
R1 model with verifier in a closed-loop fashion to generate
optimized attention kernels. The workflow begins with a
manual prompt, and the DeepSeek-R1 model generates the
initial GPU kernel. The verifier, running on an NVIDIA H100
GPU, analyzes the generated kernel and creates new prompts
that are fed back to the model. This closed-loop approach
iteratively refines the code generation process and achieves
100% numerical correctness on Level-1 problems and 96%
on Level-2 problems. These results demonstrate the potential
of using advanced models like DeepSeek-R1 with increased
computational resources during inference to generate high-
performance GPU kernels.

To further explore how to enable LLMs to generate high-
quality kernel code, Brabec et al. [27] from Charles University
and other institutions systematically evaluate the capability of
reasoning LLMs to produce optimized CUDA code through
three well-known CUDA assignments. By introducing a tu-
toring mechanism (providing more detailed optimization hints
and algorithmic descriptions in the prompts), they find that
the quality of generated code can be significantly improved.
For simpler CUDA tasks like computing histogram, where the
optimization space is relatively straightforward, appropriate
suggestions alone enable the model to autonomously complete

the optimization. However, for more complex problems like k-
nearest neighbors, which require intricate parallel algorithm
design, the models often fail to produce correct solutions
without explicit, step-by-step guidance. The study reveals that
while LLMs excel at following clear instructions, they struggle
to make high-level optimization decisions independently when
lacking adequate guidance. Furthermore, the models exhibit
limitations in selecting algorithmic hyperparameters, under-
scoring the continued importance of integrating performance
evaluation, or even auto-tuning with LLM-based code gener-
ation.

CUDA-LLM presented by Chen et al. [28] integrates a
FSR (Feature Search and Reinforcement) framework that
places the LLM in a foundational workflow (“natural lan-
guage → candidate generation → validation → performance
optimization → prompt update”). Concretely, CUDA-LLM
decomposes the verifier used in prior work such as Chen
et al. [26] into three separated components: a Compilation
Verifier to ensure syntactic and build correctness, a Function
Validator to check the functional correctness of the kernel,
and a Performance Profiler to evaluate on-GPU execution
efficiency. This structured verifier design enables CUDA-LLM
to form a feedback signal over compilation validity, functional
correctness, and runtime performance, thereby supporting the
iterative reinforcement optimization loop of FSR. However, the
model itself is not trained to internalize generalizable tool-
usage behaviors, and directly motivates subsequent training-
based approaches in subsection IV-C.

Guo et al. [29] propose EvoENGINEER, a framework

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

that abstracts LLM-based kernel optimization into a structured
evolutionary code search process. Rather than introducing
another ad hoc workflow, EvoENGINEER organizes code evo-
lution into two orthogonal components: traverse techniques for
navigation strategies in the discrete code space and population
management for maintaining and selecting candidate solutions.
This abstraction facilitates more effective independent analysis
and systematic comparison of different evolution strategies.
Based on this framework, they instantiate three representative
variants: EvoENGINEER-Free that utilizes only task context,
EvoEngineer-Insight that leverages optimization insights and
EvoENGINEER-Full that integrates both historical solutions,
forming a spectrum of progressively richer information in-
tegration and population preservation strategies. Evaluated
on 91 real-world CUDA kernels, EvoEngineer achieves a
principled balance between performance and correctness, with
the highest averaged median speedup of 2.72× over baseline
CUDA kernels and a code validityrate of 69.8%, establishing
a principled and reusable foundation for evolutionary kernel
optimization.

From a decision theoretic perspective, Ran et al. [30] intro-
duce KERNELBAND, which reformulates kernel optimiza-
tion as a hierarchical sequential decision problem under perfor-
mance uncertainty. Instead of treating kernel refinement as ad-
hoc iteration, KERNELBAND models kernel candidate selec-
tion and optimization strategy application as two coordinated
bandit layers, guided by profiling signals. The framework
incorporates runtime behavior clustering to reduce redundant
exploration across similar kernels and leverages hardware
profiling feedback to bias the search toward promising op-
timization directions. Evaluated on TritonBench [20], KER-
NELBAND consistently outperforms state-of-the-art baselines,
achieving higher kernel efficiency with substantially fewer
tokens and exhibiting strong scalability without saturation as
more computational resources are available.

B. Multi-Agent Systems
Beyond single-agent paradigms, more works advance LLM-

based kernel optimization by adopting multi-agent architec-
tures, where coordinated interactions among specialized LLM
agents govern the optimization process in place of predefined
pipelines.

The GPU Kernel Scientist framework proposed by An-
drews and Witteveen [31] represents an early instantiation of
multi-agent systems for GPU kernel optimization. It casts opti-
mization as a scientific discovery process following a hypoth-
esis–experiment–validation loop, executed by a fixed set of
roles (Designer, Writer, Tester) under evolutionary selection.
This formulation enables exploration of unfamiliar or poorly
documented hardware (e.g., AMD MI300) with minimal prior
expertise. However, the system relies on serial execution-
time evaluation as its sole feedback signal, lacks profiler-level
guidance, and scales optimization primarily through repeated
iterations, leading to slow convergence.

Building on this paradigm, Wang et al. [32] propose GEAK,
which introduces a redesigned agentic optimization system for
CUDA kernel generation. GEAK organizes kernel optimiza-
tion into four coordinated agent roles: Generator, Evaluator,

Reflector, and Optimizer, forming a closed feedback pipeline:
the Evaluator performs cascaded correctness and performance
checks, the Reflector analyzes error traces and failures, and
the Optimizer formulates targeted refinement strategies that are
fed back to the Generator for subsequent iterations. This fine-
grained decomposition enables scalable parallel exploration
via inference-time compute scaling, rather than relying solely
on serial evolutionary iteration. Moreover, GEAK incorporates
Reflexion-style feedback loops, allowing failed or suboptimal
kernels to be analyzed and revised through error tracing and
reflective reasoning. These design choices makes GEAK better
suited for large kernel spaces and performance-sensitive work-
loads. In addition, GEAK introduces AMD-focused bench-
mark suites (ROCm Triton Benchmark), enabling rigorous
cross-platform evaluation that was absent in earlier systems.

Mishra and Nangia [33] take a fundamentally different,
search-oriented view of multi-agent collaboration in “How
Many Agents to Beat PyTorch?”. They introduce a central
Orchestrator that manages a branching search process over
parallel kernel hypotheses, casting kernel optimization as a
structured tree search in the discrete code space. Within this
orchestrated framework, a Reasoner-Agent proposes multiple
optimization strategies in natural language, which are instan-
tiated in parallel by a Synthesis-Agent into distinct kernel
variants. Dedicated Compile-Agent and Correctness-Agent ag-
gressively prune invalid or incorrect candidates before on-
GPU performance evaluation, where surviving kernels com-
pete and the winners seed the next search round. By controlling
branching, pruning, and termination, the Orchestrator prevents
premature convergence and infinite local refinement loops,
enabling large-scale parallel exploration under inference-time
compute scaling. Evaluated on NVIDIA H100 GPUs, the
framework achieves substantial speedups (e.g., 4.0× for soft-
max), demonstrating that orchestrated multi-agent search can
surpass both monolithic agents and PyTorch baselines when
sufficient compute budget is available.

Additionally, unlike prior systems that primarily generate
optimized kernels from scratch, Wei et al. [34] propose
Astra, shifting the problem setting toward optimizing existing
CUDA kernels from SGLang [35], which is a widely deployed
LLM serving framework. Astra organizes the optimization
loop into four specialized agents. A Testing Agent constructs
correctness test suites and validates candidate kernels, while
a Profiling Agent measures execution time and memory be-
havior to provide hardware-level performance feedback. A
Planning Agent jointly reasons over correctness and profiling
signals to propose targeted transformations, and a Coding
Agent applies these plans to synthesize new kernel imple-
mentations. To enable direct optimization of SGLang’s highly
interdependent kernels, Astra further introduces a pre-/post-
processing pipeline that extracts kernels into stand-alone forms
for optimization and subsequently reintegrates optimized im-
plementations back into the full framework for validation and
benchmarking. This design allows Astra to report speedups
relative to the original production kernels while preserving
compatibility with the original framework. Evaluated on real
SGLang kernels, Astra achieves consistent speedups over
single-agent baselines under zero-shot prompting, highlighting

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

the practical potential of multi-agent systems for maintaining
and optimizing production GPU code.

Beyond coordinating specialized agents for code generation,
testing, and profiling, the ai cuda engineer framework pro-
posed by Lange et al. [19] introduces a dedicated LLM-based
verifier as a central design innovation. Its key improvement lies
in treating correctness verification as a loop-internal, learnable
optimization signal rather than a purely post-hoc execution
filter. By performing early “soft verification” prior to hardware
execution, the verifier prunes obviously incorrect candidates
at the input stage rather than relying on expensive post-
execution result checking, thereby enabling deeper and more
aggressive exploration of the kernel search space. Moreover,
ai cuda engineer integrates error summarization and in-context
improvement into this verification loop, forming a closed-loop
evolutionary workflow for translating PyTorch operators into
optimized CUDA kernels and supporting complex transforma-
tions such as multi-operator fusion.

Furthermore, STARK proposed by Dong et al. [36] ad-
vances prior LLM-based kernel optimizers by redesigning
kernel refinement as a tightly coordinated multi-agent process
with strategic tree search over persistent memory. STARK
decomposes optimization into specialized planning, coding,
and debugging agents, and introduces grounded instructions
and dynamic context windows to translate high-level strategies
into precise, localized CUDA code edits. Grounded instruc-
tions anchor planned transformations to concrete code spans,
specifying where and how to apply each optimization, while
dynamic context windows expose different historical attempts
and feedback to specific agents, enabling experience-guided
planning, implementation, and debugging. This design tightly
couples strategic reasoning with low-level execution and bal-
ances exploration and exploitation to systematically navigate
the code space, mitigating common failure modes such as
incoherent refinements and myopic local search. Evaluated on
KernelBench, STARK achieves substantially higher success
rates and runtime speedups (up to 10×–16×), particularly
on kernels where baseline agents struggle to produce valid
implementations.

Meanwhile, Wang and the PyTorch Team at Meta [37]
produce KernelFalcon, which organizes kernel synthesis into
a deterministic, orchestrated agent pipeline with decomposi-
tion, parallel exploration, and execution-based verification. Its
workflow is decomposed into specialized agents responsible
for operator fusion, subgraph extraction, Triton kernel syn-
thesis, and end-to-end numerical validation, coordinated by
a central Orchestrator that manages delegation, failure han-
dling, and early-stop parallel search. Crucially, KernelFalcon
adopts a verifier-first loop: candidate kernels are compiled and
executed against PyTorch references, and the system early-
exits upon discovering numerically correct implementations,
enabling parallel exploration of diverse kernel realizations
while preserving full PyTorch semantics. KernelFalcon is the
first known open agentic system to achieve 100% correctness
across all 250 L1/L2/L3 KernelBench tasks, demonstrating the
effectiveness of deeply orchestrated, verification-driven agent
pipelines for reliable kernel synthesis.

In contrast to large, highly structured multi-agent frame-

works, Zhang et al. [38] propose CudaForge, a lightweight
dual-agent system that separates kernel generation and evalu-
ation into a Coder–Judge loop. The Coder generates CUDA
kernel candidates based on task instructions and feedback from
the Judge, while the Judge evaluates each candidate using cor-
rectness checks, runtime profiling, and hardware metrics (e.g.,
GPU specifications and Nsight Compute outputs) to identify
bottlenecks and provide targeted optimization guidance. This
iterative process allows the Coder to progressively refine ker-
nels across multiple rounds, correcting errors and improving
performance in a directed manner. By decoupling generation
and evaluation, CudaForge achieves highest correctness rate
and significant performance gains over baseline approaches
on Kernelbench [17] while maintaining strong practical perfor-
mance. These results highlight that even a minimalist agentic
decomposition, when combined with iterative, hardware-aware
feedback, can deliver meaningful gains in real-world kernel
optimization.

Building on lightweight, profiling agentic refinement such as
CudaForge, Lei et al. [39] further propose PRAGMA, a multi-
agent framework that tightly integrates fine-grained hardware
profiling into the LLM optimization loop. Not only does
PRAGMA rely on correctness or coarse runtime feedback,
but grounds iterative kernel refinement in detailed, hardware-
aware performance signals collected from both GPU and CPU
backends. PRAGMA employs a Profiler Agent to gather low-
level metrics from diverse profiling tools, including Nsight
Compute and Linux perf. A dedicated Conductor Agent then
interprets these metrics, performs bottleneck classification, and
distills them into high-level optimization hints. Guided by this
feedback, the Coder Agent iteratively refines kernel imple-
mentations, while the system explicitly preserves historically
best-performing variants and their profiling traces, enabling
context-aware reasoning over evolving performance bottle-
necks. Experimental results on KernelBench [17] demonstrate
that PRAGMA consistently outperforms prior LLM-based ap-
proaches, achieving averaged speedups of 2.81× on CPU and
2.30×–4.50× on GPU, and up to 10.95× over baseline LLM-
generated kernels. These results highlight the effectiveness of
reasoning based on detailed profiling feedback and explicit
bottleneck interpretation.

Li et al. [40] propose TritonForge, a framework that
centers on a LLM optimization pipeline for Triton kernels.
TritonForge incorporates specialized agents for test generation,
kernel optimization, and fault-aware remediation, forming a
multi-stage workflow that supports automated benchmarking,
error correction, and iterative refinement. Profiling and code
generation are performed in a closed loop until performance
converges or a predefined iteration budget is reached, enabling
TritonForge to progressively steer Triton kernels toward high-
performance implementations without manual profiling exper-
tise. Moreover, TritonForge also integrates NVIDIA Nsight
Compute into the optimization loop to collect low-level hard-
ware metrics, such as memory throughput, warp occupancy,
and instruction stalls, and translates these profiling signals into
structured feedback for the LLM. Based on this feedback,
the model generates targeted code modifications, including
changes to tiling strategies, memory layouts, and the insertion

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

of auto-tuning directives. While this profiling-guided loop en-
ables TritonForge to progressively steer kernels toward higher
performance without manual profiling expertise, its iterative
search exhibits limited exploration efficiency: the LLM often
revisits semantically similar but performance-neutral variants
and tends to converge prematurely to shallow performance
plateaus, reflecting the lack of gradient-like guidance in pro-
filing feedback and motivating the need for stronger diversity
control, adaptive stopping, and memory-augmented search in
future designs.

Furthermore, Sereda et al. [41] introduce KForge, which
is a platform-agnostic agentic framework. KForge is designed
to operate across diverse accelerator backends. It combines
a generation agent with a performance analysis agent that
interprets profiling data from heterogeneous sources, includ-
ing programmatic APIs and GUI-based tools. This work
explores whether LLMs can generate kernel programs for
multiple hardware accelerators, leveraging both algorithmic
and hardware-specific optimizations. This separation between
code synthesis and performance interpretation enables cross-
platform knowledge transfer with minimal supervision. By
requiring only a single example to target new hardware,
KForge demonstrates that agentic optimization can generalize
across fundamentally different parallel programming models,
such as NVIDIA CUDA and Apple Metal.

Following this, Nagaitsev et al. [42] propose PIKE, a
population-based multi-agent framework for iterative LLM-
driven kernel optimization. PIKE models optimization as a
population search process, where each agent corresponds to an
independent LLM query and agents can be executed sequen-
tially or in parallel using the same underlying model, forming
a shared verification-driven evolutionary loop. The framework
maintains a solution library storing the initial PyTorch model
and validated candidates. At each iteration, existing solutions
are selected as seeds, from which new kernels are gener-
ated via mutation or crossover. Candidate solutions are then
compiled, functionally validated, and benchmarked, optionally
refined by a dedicated Error Fixing Agent (EFA), and finally
inserted back into the library. This loop repeats until conver-
gence or a predefined budget is reached, and can be paral-
lelized through island-based population structures. Within this
framework, PIKE instantiates two representative strategies.
PIKE-B (Branching Search) is an exploit-heavy, mutation-only
strategy that duplicates the top-k elite solutions to form each
new population, rapidly refining high-potential kernels under
a single-island and short-term memory setting. In contrast,
PIKE-O (OpenEvolve-based) emphasizes exploration through
crossover across multiple elite solutions and island-based
parallelism. Empirical results on the METR-refined variant of
KernelBench [17] show that exploit-heavy strategies combined
with EFA achieve more effective optimization trajectories, and
that optimization step granularity is a key determinant of final
performance.

Finally, industrial systems such as Huawei’s AKG [43]
framework illustrate how multi-agent principles can be scaled
and integrated into production compiler stacks. The AIKG
subproject adopts a role-specialized agent architecture, in-
cluding Designer, Coder, Conductor, and Verifier agents, inte-

grated with MLIR-based compilation and retrieval-augmented
generation. Unlike research prototypes, AKG emphasizes ex-
tensibility, backend diversity, and workflow robustness, sup-
porting multiple hardware targets such as Ascend accelera-
tors. Notably, although Astra, KForge all exhibit forms of
generalization, they generalize along fundamentally different
dimensions. Astra [34] attempts to extend its ability to au-
tonomously apply a diverse set of optimization patterns across
different kernels, KForge [41] targets cross-platform hardware
abstraction, while AKG achieves ecosystem-level generaliza-
tion through deep integration with compiler infrastructures.
These differences reflect distinct trade-offs between flexibility,
control, and engineering complexity, and suggest that no single
notion of generalization dominates across all optimization
scenarios.

C. Training-based Methods

Beyond agent collaboration, a series of works adopt super-
vised fine-tuning (SFT) on curated datasets of optimized ker-
nels, or reinforcement learning (RL) with execution-grounded
rewards, enabling models to learn common optimization pat-
terns.

Firstly, He and Yoneki [11] propose CuAsmRL, which
represents a form of training-based optimization by directly
operating on NVIDIA GPU SASS-level instruction sched-
ules rather than high-level kernel code. CuAsmRL formulates
SASS scheduling as an assembly game, where a reinforcement
learning agent iteratively mutates instruction schedules start-
ing from -O3-optimized baselines and receives throughput-
oriented rewards obtained through empirical GPU execution.
By learning to mimic expert-level manual scheduling behav-
iors, the model is able to automatically discover superior low-
level schedules. However, this extreme specialization incurs
substantial training cost, as reward signals must be obtained
through repeated physical execution on GPUs. Moreover, the
lack of accurate analytical performance models for SASS-level
instructions, limits scalability and cross-domain generaliza-
tion. Consequently, applying CuAsmRL to kernels from new
domains still requires domain-specific retraining and manual
verification.

KernelLLM [44] curated the KernelBook dataset and
employs SFT for end-to-end Triton kernel generation.
KernelLLM fine-tunes Llama-3.1-8B-Instruct on approxi-
mately 25,000 paired examples of PyTorch modules and
their corresponding Triton kernel implementations, aug-
mented with synthetically compiled samples generated via
torch.compile() and curated code from TheStack [45].
The resulting dataset, KernelBook, provides structured su-
pervision that explicitly aligns high-level PyTorch semantics
with low-level Triton implementations. Trained using stan-
dard instruction-based SFT, KernelLLM translates PyTorch
programs into Triton kernel candidates, which are validated
through unit tests and pass@k sampling on KernelBench-
Triton. Despite its relatively modest parameter scale, Ker-
nelLLM achieves competitive performance with significantly
larger frontier models, highlighting the effectiveness of cu-
rated supervision in imparting GPU programming patterns.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

However, as an imitation-based SFT approach, KernelLLM
primarily inherits the optimization strategies present in the
training corpus, limiting its ability to extrapolate beyond
observed optimization patterns.

Kevin (Kernel Devin) [46] pioneers multi-turn reinforce-
ment learning for CUDA kernel generation. For each task,
Kevin samples multiple parallel trajectories, where kernels are
iteratively refined over several turns. Each refinement turn
consists of a chain-of-thought (CoT) reasoning step and a
kernel generation step, where the CoT verbalizes intermedi-
ate optimization decisions, while the kernel generation step
concretely implements these decisions into an updated CUDA
kernel, and is treated as an individual training sample with
execution-grounded rewards. To prevent context explosion,
long CoTs are discarded while compact summaries of opti-
mization actions, together with previously generated kernels
and evaluation feedback, are retained to condition subsequent
refinement turns. Evaluated on KernelBench [17], Kevin im-
proves kernel correctness from 56% to 82% and increases
mean speedup from 0.53× to 1.10× over the PyTorch Eager
baseline. These results demonstrate that reinforcement learning
can effectively train models to reason and optimize over a
sequence of structured refinement steps. However, its evalua-
tion is primarily conducted on NVIDIA A100 GPUs, leaving
generalization to diverse hardware architectures as an open
question.

Following Kevin, CUDA-L1 introduced by Li et al.
[47] includes three stages: Supervised Fine-Tuning with Data
Augmentation, Self-Supervised Learning, and Contrastive Re-
inforcement Learning. The approach augments the training
dataset with CUDA code variants generated by LLMs and fine-
tunes the base model on executable and correct implementa-
tions to establish foundational CUDA knowledge. The model
then iteratively generates CUDA kernels, validates their cor-
rectness and executability, and trains on successfully validated
examples, enabling autonomous improvement without human
supervision. Additionally, contrastive learning is employed
with execution-time rewards, training the model to distinguish
between faster and slower CUDA implementations, ultimately
optimizing for superior performance. However, the CUDA-
L1 approach relies on iterative generation, validation, and
training cycles, which makes the whole process relatively time-
consuming.

In the triton domain, Li et al. [48] introduce AutoTri-
ton that represents the first dedicated RL-trained model for
Triton kernel synthesis, combining SFT with Group Rela-
tive Policy Optimization (GRPO) reinforcement learning [49]
under hybrid rewards based on rule and execution. Built
on an 8B parameter architecture, AutoTriton first undergoes
supervised fine-tuning on curated Triton examples, then is
further optimized using the GRPO algorithm with a hybrid
reward function that combines rule-based and execution-based
feedback. AutoTriton demonstrates performance comparable
to significantly larger frontier models (e.g., Claude-3.5 Sonnet
and DeepSeek-R1) across five evaluation channels of Triton-
Bench [20] and KernelBench [17]. The work highlights the
effectiveness of RL in learning high-level Triton programming
patterns and hardware-specific optimizations.

SwizzlePerf proposed by Tschand et al. [12] demonstrates
that hardware topology–aware execution mapping policies can
also be internalized into model parameters through training.
Instead of generating full kernels, SwizzlePerf trains models
to learn data–work–hardware swizzling policies by modeling
GPU memory hierarchy and architectural topology (e.g., AMD
XCD). The learned policies plan execution and storage map-
pings that optimize locality and cache utilization, effectively
transferring human hardware–software co-design knowledge
into learned optimization behaviors. Evaluations on ML and
scientific kernels report speedups of up to 2.1× and up to
70% improvements in L2 cache hit rate, illustrating that end-
to-end training can internalize not only code-level but also
hardware-mapping–level optimization strategies. However, its
current scope mainly focuses on cache hierarchy optimization,
leaving other hardware resources under-explored.

ConCuR (Concise CUDA Reasoning) proposed by Kong
et al. [50] addresses the data bottleneck in LLM-driven ker-
nel generation by introducing a data synthesis and curation
pipeline. In the synthesis stage, 18,162 PyTorch programs
from KernelBook are expanded via parallel reasoning-aware
generation into 90,810 PyTorch–CoT–CUDA triplets, forming
a large but noisy candidate pool. In the curation stage, Con-
CuR jointly selects samples based on reasoning conciseness,
runtime speedup, and task-type balance, distilling 4,892 high-
quality PyTorch–reasoning–CUDA triplets. Fine-tuning QwQ-
32B on ConCuR yields KernelCoder, improving pass@1
correctness from 18% to 58% on Level-1 and from 17%
to 59% on Level-2, while also significantly boosting fast1
performance.

The framework proposed by Nichols et al. [51] trains LLM
to interact with performance analysis tools as part of the
kernel optimization process. This approach fine-tunes models
to perform tool-assisted reasoning at inference time, enabling
them to iteratively formulate optimization hypotheses, invoke
benchmarking and profiling tools, and refine kernel imple-
mentations through extended reasoning chains. The training
procedure employs reinforcement learning objectives based on
verifiable performance rewards, encouraging effective tool us-
age and measurable optimization improvements while avoiding
the need for large-scale online benchmarking during training.
By distilling optimization reasoning into compact models,
the method amortizes performance engineering expertise into
model parameters and enables efficient deployment. Empirical
evaluations on GPU kernel benchmarks and real HPC appli-
cations demonstrate strong optimization capability, including
a reported 17% kernel-level speedup that translates into a 3%
end-to-end application improvement.

TritonRL proposed by Woo et al. [52] introduces an 8B-
scale Triton-specialized language model trained with a hierar-
chical and verifiable reinforcement learning pipeline designed
to achieve both high correctness and runtime performance
while mitigating reward hacking. TritonRL combines super-
vised fine-tuning with DeepSeek-R1 distillation and a subse-
quent RL stage featuring fine-grained reward decomposition
across correctness, efficiency, and style. Its verification frame-
work integrates enhanced rule checks with LLM judges to con-
struct robust, verifiable rewards, enabling reliable diagnosis of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

kernel validity and preventing reward hacking that arises from
naive syntax-only verification. By incorporating hierarchical
reward assignment, token-level credit allocation, and strategic
data mixing across SFT and RL stages, TritonRL stabilizes
multi-turn training and yields improved kernel quality, gener-
alization, and robustness. At the 8B scale, TritonRL surpasses
prior Triton-specific models including KernelLLM [44] and
AutoTriton[48], demonstrating how reinforcement learning
can coordinate complex verification and generation workflows
rather than merely improving individual code quality.

While prior training-based approaches primarily focus on
dense kernels, SparseRL [53] extends reinforcement learning
to sparsity-constrained CUDA kernel generation, where legal-
ity and performance are tightly coupled. Unlike general ker-
nel optimization, sparse computing introduces hard structural
constraints that must be respected throughout the optimization
process, making reward design and exploration substantially
more challenging. SparseRL directly fine-tunes a language
model using RL to improve kernel correctness, sparsity-
aware performance, and execution efficiency. The method
formulates sparse kernel generation as a sequential decision
process, where the model receives verifiable rewards based
on compile success, functional correctness, sparsity legality,
and runtime performance. Through repeated interaction with
the execution environment, the model learns to apply domain
specific sparse optimizations. Evaluated across a diverse suite
of sparse CUDA kernels, SparseRL significantly outperforms
supervised baselines and demonstrates strong generalization
to unseen sparsity patterns. As a training-based RL approach,
SparseRL highlights the effectiveness of reinforcement learn-
ing in enabling models to internalize complex hardware-aware
optimization strategies for sparse GPU workloads.

Inspired by human staged optimization, Zhu et al. [54]
propose the MTMC framework. MTMC separates the com-
plex task into two coordinated components: Macro Thinking,
which employs RL to train lightweight LLMs in efficiently
exploring and learning semantic optimization strategies that
maximize hardware utilization, and Micro Coding, which
leverages general-purpose LLMs to incrementally implement
stepwise optimization proposals. This decoupling allows the
framework to navigate the vast optimization space while
maintaining implementation correctness, avoiding the errors
inherent in kernel generation. Evaluated on KernelBench [17],
MTMC achieves near 100% and 70% accuracy at Levels 1-
2 and 3, over 50% than SOTA general purpose and domain
finetuned LLMs, with up to 7.3x speedup over LLMs, and
2.2x over expert optimized PyTorch Eager kernels. On the
TritonBench [20], MTMC attains up to 59.64% accuracy and
34x speedup.

D. Challenges in LLM-Based Kernel Generation Methods

LLM-based kernel generation faces multiple key challenges
across evaluation dimensions. For functional correctness and
acceleration performance, agent-based methods have achieved
steady improvements by leveraging iterative feedback from
compilers or runtime profiling. However, these approaches
come at the cost of substantial computational overhead and

multiple iterations, raising efficiency concerns. Purely training-
based methods are faster but often produce semantically flawed
kernels, resulting in incorrect results, degraded performance,
instability under edge-case inputs, or suboptimal optimization.

Robustness, versatility, cross-architecture portability, and
reproducibility remain significant challenges for both agent-
based and purely learning-based approaches. Models struggle
to generalize across diverse operators, tensor shapes, data
types, and hardware backends. The underlying cause is the
scarcity of relevant training data and the models’ insufficient
ability to capture kernel semantics, including memory access
patterns, parallel execution constraints, and data dependen-
cies.

V. ROADMAP FOR ADVANCING LLM-BASED KERNEL
GENERATION

This section addresses RQ3 by presenting a forward-
looking roadmap for advancing LLM-based GPU kernel gen-
eration. Specifically, we identify two directions: integrating
accumulated human expert knowledge and adapting ongoing
technical advances in general-purpose code LLMs for kernel-
specific generation. Human expertise in manual kernel opti-
mization from the pre-LLM era encapsulates extensive do-
main knowledge, performance heuristics, and hardware-aware
optimization strategies. Current LLMs, however, are unable to
fully capture this expertise through purely data-driven training.
Consequently, incorporating such human knowledge in an
agentic way into the LLMs has the potential to substantially
improve kernel generation. Moreover, although recent ad-
vances in general-purpose code models have led to substantial
improvements in overall coding capabilities, these models are
not specifically adapted for kernel-level optimization, leaving
considerable room to adapt and extend such advances to
kernel-specific generation and optimization. In the following,
we accordingly organize the roadmap into two subsections.

A. Integrating Human Expertise

This subsection provides a systematic summary of prior
human expertise that can inform performance optimiza-
tion in LLMs. In particular, we emphasize key perspec-
tives of human expertise, including mathematical equivalence
transformations, data locality optimization, hardware instruc-
tion mapping, dynamic-to-static transformations, and preci-
sion–resource trade-offs. We illustrate these perspectives with
a 2×2 convolution on a 3×3 input along the PyTorch-to-GPU
execution pathway.

1) Mathematical Equivalence Transformations: Mathemat-
ical equivalence transformations reformulate computational
problems into mathematically equivalent forms that can be
implemented more efficiently.

We illustrate this principle using the im2col transformation
as an example. As showed in Figure 4, with a 3×3 input
and a 2×2 kernel, im2col flattens each overlapping patch into
a column and concatenates them into a matrix—converting
convolution from scattered dot products into a single dense
matrix multiplication (GEMM). This restructuring enables the
use of optimized GEMM libraries and hardware accelerators.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Table IV
WORKS AND PUBLICATION DATES WITH OPEN SOURCE STATUS

LLM-based Code Generation Work Date Type Open Source? Benchmarking

KernelBench [17] 2025.02 Single-Agent ✓ KernelBench
Chen et al. [26] 2025.02 Single-Agent × KernelBench
CuAsmRL [11] 2025.03 Training-based × Others
Brabec et al. [27] 2025.04 Single-Agent ✓ Others
KernelLLM [44] 2025.05 Training-based ✓ KernelBench-Triton2

CUDA-LLM [28] 2025.06 Single-Agent × KernelBench, CUDA Samples [55], Leet-
GPU [56]

GPU Kernel Scientist [31] 2025.06 Multi-Agent × Others
Kevin [46] 2025.07 Training-based × KernelBench
CUDA-L1 [47] 2025.07 Training-based ✓ KernelBench
Geak [32] 2025.07 Multi-Agent ✓ TritonBench-revised Benchmark3

AutoTriton [48] 2025.07 Training-based ✓ KernelBench, TritonBench
Mishra and Nangia [33] 2025.07 Multi-Agent × Others
SwizzlePerf [12] 2025.08 Training-based × Others
Hao et al. [4] 2025.09 Mobile System ✓ Others
Astra [34] 2025.09 Multi-Agent ✓ Others
AI CUDA Engineer [19] 2025.09 Multi-Agent × robust-kbench
ConCuR [50] 2025.10 Training-based ✓ KernelBench
EVOENGINEER [29] 2025.10 Single-Agent ✓ Others
STARK [36] 2025.10 Multi-Agent × KernelBench
Nichols et al. [51] 2025.10 Training-based × KernelBench
TRITONRL [52] 2025.10 Training-based ✓ KernelBench
KernelFalcon [37] 2025.11 Multi-Agent ✓ KernelBench
CudaForge [38] 2025.11 Multi-Agent ✓ KernelBench (sampled)
PRAGMA [39] 2025.11 Multi-Agent × KernelBench
SparseRL [53] 2025.11 Training-based × Others
KERNELBAND [30] 2025.11 Single-Agent × TritonBench
MTMC [54] 2025.11 Training-based × KernelBench, TritonBench
KForge [41] 2025.11 Multi-Agent × Kernelbench
PIKE [42] 2025.11 Multi-Agent × METR-refined [57] variant of KernelBench
TritonForge [40] 2025.12 Multi-Agent × TritonBench
AKG [43] 2025 Multi-Agent ✓ KernelBench
2 KernelBench-Triton is a variant of KernelBench [17], adapted specifically for evaluating Triton kernel generation.
3 TritonBench-revised is an enhanced version of TritonBench, where Wang et al. [32] corrected kernel errors and fixed missing function calls in the original

evaluation suite.
Notes: ✓ = Open Source, × = Not Open Source.

Type: Training-based, Agent, Multi-Agent, Dataset, Mobile System.
Benchmarking: Named benchmarks are used as indicated; ”Others” refers to custom or unspecified evaluation suites; ”-” indicates no benchmarking was

declared or applicable.

2) Data Locality Optimization: Data locality optimization
targets the fundamental memory bandwidth bottleneck in
GPU computing. This perspective maximizes utilization of
the GPU memory hierarchy from global memory through
shared memory to registers by strategically restructuring data
placement and access patterns to minimize data movement
and maximize reuse. Specifically, coalesced memory access
allows threads to load contiguous data efficiently. Tiled shared
memory and kernel weight reuse in registers, combined with
cache-aware layouts and bank-conflict avoidance, can also
provide significant benefits [58]. Specifically, data locality
optimization covers the following dimensions.

Coalesced Memory Access. Coalescing ensures that con-
secutive threads within a warp access consecutive memory
locations, enabling a single wide memory transaction (e.g.,
128 bytes) to serve multiple threads efficiently. For regular
access patterns, this can be achieved through proper data
layout, thread organization, on-chip memory utilization, and
techniques such as reorganizing threads [59, 60], selecting

optimal thread block sizes [9], transforming data layouts (e.g.,
array of structs to struct of arrays), and tiling [61–63]. For
irregular access patterns, such as those in sparse matrices,
specialized data formats are required to maintain coalesced
memory access [64].

Shared Memory Tiling. Tiling (or spatial blocking) par-
titions data into blocks that fit within a streaming multipro-
cessor’s shared memory, enabling high-bandwidth data reuse
across multiple computations. This technique is particularly
effective for operations with regular access patterns such as
matrix multiplication and convolution. Shared memory tiling
exploits both temporal locality (reusing data across multiple
operations) [65–67] and spatial locality (accessing nearby
data) [68–70].

Kernel Fusion. Kernel fusion merges multiple consecutive
kernels into a single kernel, eliminating intermediate global
memory writes and reads. This optimization reduces both
memory traffic and kernel launch overhead. Key benefits in-
clude improved data reuse and enhanced cache utilization [71].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

(1*a)+(2*b)+(4*c)+(5*d)

1
2
4
5

[a , b , c , d][]

Naïve Convolution

im2col + GEMM

x x
xx

x
x x

x

x
x
x
x

Figure 4. Schematic comparison of native convolution versus im2col+GEMM
convolution. Up: Native convolution performs a sliding-window dot product:
the kernel [a, b, c, d] convolves with the input patch [1, 2, 4, 5] to produce
one output element (1 ·a)+ (2 · b)+ (4 · c)+ (5 ·d). Down: im2col+GEMM
first flattens all sliding windows into columns of a matrix (only the first
column [1, 2, 4, 5]T is shown), then multiplies the flattened kernel [a, b, c, d]
with this matrix in a single GEMM operation, producing all output elements
simultaneously.

However, fusion may increase register and shared memory
pressure, requiring careful trade-off analysis [72].

Register Blocking. Registers provide the fastest memory
tier, with zero access latency. Register blocking (or temporal
blocking) stores frequently reused values (e.g., kernel weights
in convolution) in registers throughout computation; therefore
this technique is especially effective for algorithms with high
temporal locality [73, 74].

Prefetching. To reduce long memory latencies, data
prefetching loads data for future computation steps before
they are needed, overlapping memory transfers with compu-
tation. This technique is commonly applied in dense linear
algebra kernels (e.g., matrix multiplication [75]) and stencil
operations [66], often in combination with tiling and double
buffering [76].

3) Hardware Instruction Optimization: Hardware instruc-
tion optimization focuses on mapping computation to efficient
GPU instructions and scheduling them to maximize execution-
unit utilization. At this level, the algorithmic structure and
data layout are largely fixed, and performance improvements
are achieved by exploiting instruction-level parallelism and
hardware-specific execution characteristics. Specifically, opti-
mization must address two fundamental tensions: ❶ the severe
mismatch between peak arithmetic throughput and long mem-
ory and instruction latencies, and ❷ the contention for limited
on-chip resources (e.g., registers and shared memory) induced
by massive thread-level parallelism. Effective instruction-level
optimizations therefore require careful coordination of instruc-
tion selection, scheduling, and resource allocation to fully
exploit the underlying GPU microarchitecture.

Considerable human effort has historically gone into ad-

dressing the two fundamental performance tensions in GPU
kernels. To mitigate the mismatch between high arithmetic
throughput and long memory and instruction latencies, expert
developers maximized parallelism at multiple levels. At the
instruction level, they applied loop unrolling and instruction
scheduling to increase instruction-level parallelism (ILP) and
keep deep CUDA core pipelines occupied. Vectorization (e.g.,
using float4) further enhanced throughput by enabling SIMD
execution and improving memory coalescing [77, 78]. At
the thread-group level, warp-centric programming and warp
shuffle operations facilitated efficient data exchange and reduc-
tion without shared-memory synchronization, sustaining warp
activity and improving latency hiding [79, 80].

Similarly, managing contention for limited on-chip re-
sources required careful tuning of work granularity and ex-
ecution mapping. Thread coarsening illustrated a key trade-
off: assigning more computation per thread improved ILP and
register-level data reuse but increased register pressure, poten-
tially reducing occupancy and limiting latency hiding [81].
Likewise, offloading computation to specialized execution
units such as Tensor Cores achieved orders-of-magnitude
higher throughput for mixed-precision GEMM [82], but im-
posed strict constraints on data layout, problem size, and
kernel design, influencing overall resource allocation and
scheduling decisions.

Previous work has shown that reducing numerical precision
can improve computational efficiency and resource utilization,
offering strategies that may also benefit large-scale model
training and deployment. To balance computation, memory
usage, and accuracy, practitioners selectively reduced preci-
sion, using FP16 and INT8 operations to leverage specialized
hardware while maintaining acceptable model accuracy.

During training, techniques such as Automatic Mixed Preci-
sion (AMP) dynamically combine 16-bit and 32-bit operations,
achieving significant speedups and memory savings without
compromising accuracy [83]. For deployment, aggressive post-
training quantization maps weights and activations to low-bit
representations (e.g., INT4), reducing model size and enabling
execution on resource-constrained devices, while quantization-
aware training mitigates accuracy loss by embedding round-
ing and clipping directly into the forward pass [84]. Be-
yond precision alone, co-designing data layouts with reduced-
precision arithmetic—such as transforming from Array-of-
Structs to Struct-of-Arrays—has been shown to unlock ad-
ditional speedups on GPUs by improving memory access
patterns and cache utilization [85].

Current LLMs fall short of fully understanding human
domain expertise. Integrating such expertise in an agentic way
could substantially improve LLM-driven kernel generation.

B. Adapting Technical Advances in General-Purpose Code
LLMs

In this section, we distill recent advances in the general code
domain into a set of high-level principles (P1–P3) that may
guide the advancement of DL kernel generation.
• P1: Execution Semantic Integration. Most LLM-based
code generation approaches predominantly operate on textual

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

program representations, implicitly treating source code as
a sufficient proxy for execution semantics relevant to opti-
mization. However, in general programming tasks, it has been
shown that textual representations alone are often insufficient
to ensure functional correctness.

To address this limitation, some studies have explored
ways to embed richer code semantics into model training,
enabling LLMs to better capture execution-level behaviors
and performance-relevant properties [86, 87]. This suggests
that, for kernel generation, explicitly incorporating semantic
information such as execution-level behaviors from kernel
code into LLM-based methods could substantially enhance
their ability to generate functionally correct kernels.
• P2: Performance-Aware Semantic Integration.
Performance-oriented code generation, such as kernel
optimization, differs from standard code generation in that
it requires balancing runtime efficiency and functional
correctness, which could be framed as a multi-objective
optimization problem. Recent advances [88–90] have been
proposed to address multi-objective optimization in the
general-purpose code domain. These developments also
suggest a path forward for LLM-based kernel generation.
• P3: Hardware-Aware Cost Modeling. Kernel optimization
is inherently hardware-aware: performance depends critically
on factors such as memory access patterns, cache behavior,
parallelism, and synchronization. Current LLMs, however,
lack native awareness of these hardware constraints, limiting
their ability to reliably generate high-performance kernels.
Recent advances [91] have focused on predicting numeric
outcomes of code executions, which has the potential to
be applied in hardware-aware cost modeling. This could be
further leveraged to improve hardware-aware kernel generation
in LLMs.

VI. CONCLUSION

This survey provides an overview of current benchmarks
and techniques for LLM-driven kernel generation and opti-
mization. Despite notable progress, systematically improving
the performance of existing methods remains challenging. We
summarize insights from the pre-LLM era and the broader
code generation domain that may inform future advances
in kernel optimization. We hope this survey serves as a
timely reference and motivates further research on DL kernel
generation and optimization.

REFERENCES

[1] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn,
and P. Villalobos, “Compute trends across three eras of
machine learning,” in 2022 international joint conference
on neural networks (IJCNN). IEEE, 2022, pp. 1–8.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architec-
ture, 2017, pp. 1–12.

[3] S. Kalade and G. Schelle, “Npueval: Optimizing npu
kernels with llms and open source compilers,” arXiv
preprint arXiv:2507.14403, 2025.

[4] Z. Hao, J. Wei, T. Wang, M. Huang, H. Jiang, S. Jiang,
T. Cao, and J. Ren, “Scaling llm test-time com-
pute with mobile npu on smartphones,” arXiv preprint
arXiv:2509.23324, 2025.

[5] M.-K. Nguyen-Nhat, H. D. N. Do, H. T. Le, and T. T.
Dao, “Llmperf: Gpu performance modeling meets large
language models,” in 2024 32nd International Confer-
ence on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE,
2024, pp. 1–8.

[6] G. Bolet, G. Georgakoudis, H. Menon, K. Parasyris,
N. Hasabnis, H. Estes, K. Cameron, and G. Oren,
“Can large language models predict parallel code perfor-
mance?” in Proceedings of the 34th International Sym-
posium on High-Performance Parallel and Distributed
Computing, 2025, pp. 1–6.

[7] C. Kachris, “A survey on hardware accelerators for large
language models,” Applied Sciences, vol. 15, no. 2, p.
586, 2025.

[8] S. Hong and H. Kim, “An analytical model for a gpu
architecture with memory-level and thread-level paral-
lelism awareness,” in Proceedings of the 36th annual in-
ternational symposium on Computer architecture, 2009,
pp. 152–163.

[9] A. Leist, D. P. Playne, and K. A. Hawick, “Exploiting
graphical processing units for data-parallel scientific ap-
plications,” Concurrency and Computation: Practice and
Experience, vol. 21, no. 18, pp. 2400–2437, 2009.

[10] B. F. Spector, S. Arora, A. Singhal, D. Y. Fu, and C. Ré,
“Thunderkittens: Simple, fast, and adorable ai kernels,”
arXiv preprint arXiv:2410.20399, 2024.

[11] G. He and E. Yoneki, “Cuasmrl: Optimizing gpu sass
schedules via deep reinforcement learning,” in Proceed-
ings of the 23rd ACM/IEEE International Symposium on
Code Generation and Optimization, 2025, pp. 493–506.

[12] A. Tschand, M. Awad, R. Swann, K. Ramakrishnan,
J. Ma, K. Lowery, G. Dasika, and V. J. Reddi, “Swiz-
zleperf: Hardware-aware llms for gpu kernel performance
optimization,” arXiv preprint arXiv:2508.20258, 2025.

[13] P. Hijma, S. Heldens, A. Sclocco, B. Van Werkhoven,
and H. E. Bal, “Optimization techniques for gpu pro-
gramming,” ACM Computing Surveys, vol. 55, no. 11,
pp. 1–81, 2023.

[14] A. Santa Molison, M. Moraes, G. Melo, F. Santos,
and W. K. Assuncao, “Is llm-generated code more
maintainable\& reliable than human-written code,” arXiv
preprint arXiv:2508.00700, 2025.

[15] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong,
E. D. Lara, W. Shi, and C. Stewart, “A survey on edge
performance benchmarking,” ACM Computing Surveys
(CSUR), vol. 54, no. 3, pp. 1–33, 2021.

[16] Triton Development Community, “Triton documen-
tation,” https://triton- lang.org/main/index.html,
2026, accessed: 2026-01. [Online]. Available:
https://triton-lang.org/main/index.html

https://triton-lang.org/main/index.html
https://triton-lang.org/main/index.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

[17] A. Ouyang, S. Guo, S. Arora, A. L. Zhang, W. Hu,
C. Ré, and A. Mirhoseini, “Kernelbench: Can llms write
efficient gpu kernels?” arXiv preprint arXiv:2502.10517,
2025.

[18] Z. Wen, Y. Zhang, Z. Li, Z. Liu, L. Xie, and T. Zhang,
“Multikernelbench: A multi-platform benchmark for ker-
nel generation,” arXiv e-prints, pp. arXiv–2507, 2025.

[19] R. T. Lange, Q. Sun, A. Prasad, M. Faldor, Y. Tang,
and D. Ha, “Towards robust agentic cuda kernel bench-
marking, verification, and optimization,” arXiv preprint
arXiv:2509.14279, 2025.

[20] J. Li, S. Li, Z. Gao, Q. Shi, Y. Li, Z. Wang, J. Huang,
W. WangHaojie, J. Wang, X. Han et al., “Tritonbench:
Benchmarking large language model capabilities for gen-
erating triton operators,” in Findings of the Association
for Computational Linguistics: ACL 2025, 2025, pp.
23 053–23 066.

[21] Meta, “Backendbench,” [Online]. Available: https://gith
ub.com/meta-pytorch/BackendBench, 2025, accessed:
Dec. 21, 2025.

[22] NVIDIA, “compute-eval,” [Online]. Available: https://gi
thub.com/NVIDIA/compute-eval, 2025, accessed: Dec.
21, 2025.

[23] OpenAI, “Gpt-4o system card,” 2024. [Online].
Available: https://arxiv.org/abs/2410.21276

[24] Deepseek-AI, “Deepseek-r1 incentivizes reasoning in
llms through reinforcement learning,” Nature, vol. 645,
no. 8081, p. 633–638, Sep. 2025. [Online]. Available:
http://dx.doi.org/10.1038/s41586-025-09422-z

[25] H. Touvron, T. Lavril, G. Izacard, X. Martinet,
M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.13971

[26] T. Chen, B. Xu, and K. Devleker, “Automating gpu kernel
generation with deepseek-r1 and inference time scaling,”
Online: NVIDIA Blog, https://developer.nvidia.com/b
log/automating-gpu-kernel-generation-with-deepseek-r
1-and-inference-time-scaling/, 2025, accessed: Nov. 11,
2025.

[27] M. Brabec, J. Klepl, M. Töpfer, and M. Kruliš, “Tutoring
llm into a better cuda optimizer,” in European Conference
on Parallel Processing. Springer, 2025, pp. 250–263.

[28] W. Chen, J. Zhu, Q. Fan, Y. Ma, and A. Zou, “Cuda-llm:
Llms can write efficient cuda kernels,” arXiv preprint
arXiv:2506.09092, 2025.

[29] P. Guo, C. Zhu, S. Chen, F. Liu, X. Lin, Z. Lu, and
Q. Zhang, “Evoengineer: Mastering automated cuda ker-
nel code evolution with large language models,” arXiv
preprint arXiv:2510.03760, 2025.

[30] D. Ran, S. Xie, M. Ji, Z. Hua, M. Wu, Y. Cao,
Y. Guo, Y. Hao, L. Li, Y. Hu et al., “Kernelband: Boost-
ing llm-based kernel optimization with a hierarchical
and hardware-aware multi-armed bandit,” arXiv preprint
arXiv:2511.18868, 2025.

[31] M. Andrews and S. Witteveen, “Gpu kernel scientist: An
llm-driven framework for iterative kernel optimization,”

arXiv preprint arXiv:2506.20807, 2025.
[32] J. Wang, V. Joshi, S. Majumder, X. Chao, B. Ding,

Z. Liu, P. P. Brahma, D. Li, Z. Liu, and E. Barsoum,
“Geak: Introducing triton kernel ai agent & evaluation
benchmarks,” arXiv preprint arXiv:2507.23194, 2025.

[33] S. Mishra and A. Nangia, “How many agents does it
take to beat pytorch? (surprisingly not that much),” https:
//letters.lossfunk.com/p/how-many-agents-does-it-take-t
o-beat, Jul. 2025, accessed: 2025-11-12.

[34] A. Wei, T. Sun, Y. Seenichamy, H. Song, A. Ouyang,
A. Mirhoseini, K. Wang, and A. Aiken, “Astra: A multi-
agent system for gpu kernel performance optimization,”
arXiv preprint arXiv:2509.07506, 2025.

[35] L. Zheng, L. Yin, Z. Xie, C. L. Sun, J. Huang, C. H.
Yu, S. Cao, C. Kozyrakis, I. Stoica, J. E. Gonzalez
et al., “Sglang: Efficient execution of structured language
model programs,” Advances in neural information pro-
cessing systems, vol. 37, pp. 62 557–62 583, 2024.

[36] J. Dong, Y. Yang, T. Liu, Y. Wang, F. Qi,
V. Tarokh, K. Rangadurai, and S. Yang, “Stark: Strategic
team of agents for refining kernels,” arXiv preprint
arXiv:2510.16996, 2025.

[37] L. Wang and the PyTorch Team at Meta, “Kernelfalcon:
Autonomous gpu kernel generation via deep agents,”
[Online]. Available: https://pytorch.org/blog/kernelfalco
n-autonomous-gpu-kernel-generation-via-deep-agents/,
2025, accessed: Nov. 11, 2025.

[38] Z. Zhang, R. Wang, S. Li, Y. Luo, M. Hong, and
C. Ding, “Cudaforge: An agent framework with hardware
feedback for cuda kernel optimization,” arXiv preprint
arXiv:2511.01884, 2025.

[39] K. Lei, H. Yang, H. Zhang, X. You, K. Zhang, Z. Luan,
Y. Liu, and D. Qian, “Pragma: A profiling-reasoned
multi-agent framework for automatic kernel optimiza-
tion,” arXiv preprint arXiv:2511.06345, 2025.

[40] H. Li, K. Man, P. Kanuparthy, H. Chen, W. Sun,
S. Tallam, C. Zhu, K. Zhu, and Z. Qian, “Tritonforge:
Profiling-guided framework for automated triton kernel
optimization,” arXiv preprint arXiv:2512.09196, 2025.

[41] T. Sereda, T. S. John, B. Bartan, N. Serrino, S. Katti, and
Z. Asgar, “Kforge: Program synthesis for diverse ai hard-
ware accelerators,” arXiv preprint arXiv:2511.13274,
2025.

[42] K. Nagaitsev, L. Grbcic, S. Williams, and C. Iancu,
“Optimizing pytorch inference with llm-based multi-
agent systems,” arXiv preprint arXiv:2511.16964, 2025.

[43] MindSpore, “Auto kernel generator (akg),” [Online].
Available: https://atomgit.com/mindspore/akg, 2025,
accessed: Dec. 18, 2025.

[44] Z. V. Fisches, S. Paliskara, S. Guo, A. Zhang, J. Spisak,
C. Cummins, H. Leather, G. Synnaeve, J. Isaacson,
A. Markosyan, and M. Saroufim, “Kernelllm: Making
kernel development more accessible,” [Online]. Avail-
able: https://huggingface.co/facebook/KernelLLM, 2025,
accessed: Nov. 11, 2025.

[45] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M.
Ferrandis, Y. Jernite, M. Mitchell, S. Hughes, T. Wolf
et al., “The stack: 3 tb of permissively licensed source

https://github.com/meta-pytorch/BackendBench
https://github.com/meta-pytorch/BackendBench
https://github.com/NVIDIA/compute-eval
https://github.com/NVIDIA/compute-eval
https://arxiv.org/abs/2410.21276
http://dx.doi.org/10.1038/s41586-025-09422-z
https://arxiv.org/abs/2302.13971
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://letters.lossfunk.com/p/how-many-agents-does-it-take-to-beat
https://letters.lossfunk.com/p/how-many-agents-does-it-take-to-beat
https://letters.lossfunk.com/p/how-many-agents-does-it-take-to-beat
https://pytorch.org/blog/kernelfalcon-autonomous-gpu-kernel-generation-via-deep-agents/
https://pytorch.org/blog/kernelfalcon-autonomous-gpu-kernel-generation-via-deep-agents/
https://atomgit.com/mindspore/akg
https://huggingface.co/facebook/KernelLLM

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

code,” arXiv preprint arXiv:2211.15533, 2022.
[46] C. Baronio, P. Marsella, B. Pan, S. Guo, and S. Alberti,

“Kevin: Multi-turn rl for generating cuda kernels,” arXiv
preprint arXiv:2507.11948, 2025.

[47] X. Li, X. Sun, A. Wang, J. Li, and C. Shum, “Cuda-l1:
Improving cuda optimization via contrastive reinforce-
ment learning,” arXiv preprint arXiv:2507.14111, 2025.

[48] S. Li, Z. Wang, Y. He, Y. Li, Q. Shi, J. Li, Y. Hu,
W. Che, X. Han, Z. Liu et al., “Autotriton: Automatic
triton programming with reinforcement learning in llms,”
arXiv preprint arXiv:2507.05687, 2025.

[49] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi,
H. Zhang, M. Zhang, Y. Li, Y. Wu et al., “Deepseekmath:
Pushing the limits of mathematical reasoning in open lan-
guage models,” arXiv preprint arXiv:2402.03300, 2024.

[50] L. Kong, J. Wei, H. Shen, and H. Wang, “Concur:
Conciseness makes state-of-the-art kernel generation,”
arXiv preprint arXiv:2510.07356, 2025.

[51] D. Nichols, K. Parasyris, C. Jekel, A. Bhatele, and
H. Menon, “Integrating performance tools in model
reasoning for gpu kernel optimization,” arXiv preprint
arXiv:2510.17158, 2025.

[52] J. Woo, S. Zhu, A. Nie, Z. Jia, Y. Wang, and Y. Park,
“Tritonrl: Training llms to think and code triton without
cheating,” arXiv preprint arXiv:2510.17891, 2025.

[53] Anonymous, “Mastering sparse CUDA generation
through pretrained models and deep reinforcement
learning,” in Submitted to The Fourteenth International
Conference on Learning Representations, 2025, under
review. [Online]. Available: https://openreview.net/for
um?id=VdLEaGPYWT

[54] X. Zhu, S. Peng, J. Guo, Y. Chen, Q. Guo, Y. Wen,
H. Qin, R. Chen, Q. Zhou, K. Gao et al., “Qimeng-
kernel: Macro-thinking micro-coding paradigm for llm-
based high-performance gpu kernel generation,” arXiv
preprint arXiv:2511.20100, 2025.

[55] NVIDIA Corporation, “Cuda code samples,” [Online].
Available: https://github.com/NVIDIA/cuda-samples,
2025, accessed: Dec. 18, 2025.

[56] LeetGPU, “Challenges,” [Online]. Available: https://leet
gpu.com/challenges, 2025, accessed: Dec. 18, 2025.

[57] METR, “Measuring automated kernel engineering,” [On-
line]. Available: https://metr.org/blog/2025-02-14-mea
suring-automated-kernel-engineering/, 2025, accessed:
Dec. 18, 2025.

[58] P. Hijma, S. Heldens, A. Sclocco, B. Van Werkhoven,
and H. E. Bal, “Optimization techniques for gpu pro-
gramming,” ACM Computing Surveys, vol. 55, no. 11,
pp. 1–81, 2023.

[59] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides,
and N. Guil, “An optimized approach to histogram
computation on gpu,” Machine Vision and Applications,
vol. 24, no. 5, pp. 899–908, 2013.

[60] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel trian-
gle counting on gpus,” in SC18: International Conference
for High Performance Computing, Networking, Storage
and Analysis. IEEE, 2018, pp. 171–182.

[61] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra, “Opti-

mizing symmetric dense matrix-vector multiplication on
gpus,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis, 2011, pp. 1–10.

[62] W. T. Tang, W. J. Tan, R. Ray, Y. W. Wong, W. Chen,
S.-h. Kuo, R. S. M. Goh, S. J. Turner, and W.-F.
Wong, “Accelerating sparse matrix-vector multiplication
on gpus using bit-representation-optimized schemes,” in
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, 2013, pp. 1–12.

[63] R. Nath, S. Tomov, and J. Dongarra, “An improved
magma gemm for fermi graphics processing units,” The
International Journal of High Performance Computing
Applications, vol. 24, no. 4, pp. 511–515, 2010.

[64] J. Zhong and B. He, “Medusa: Simplified graph pro-
cessing on gpus,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 6, pp. 1543–1552, 2013.

[65] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra,
“Performance tuning and optimization techniques of
fixed and variable size batched cholesky factorization on
gpus,” Procedia Computer Science, vol. 80, pp. 119–130,
2016.

[66] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-
performance code generation for stencil computations
on gpu architectures,” in Proceedings of the 26th ACM
international conference on Supercomputing, 2012, pp.
311–320.

[67] Y. Do, H. Kim, P. Oh, D. Park, and J. Lee, “Snu-npb
2019: parallelizing and optimizing npb in opencl and
cuda for modern gpus,” in 2019 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE,
2019, pp. 93–105.

[68] M. Fang, J. Fang, W. Zhang, H. Zhou, J. Liao, and
Y. Wang, “Benchmarking the gpu memory at the warp
level,” Parallel Computing, vol. 71, pp. 23–41, 2018.

[69] F. Petrovič, D. Střelák, J. Hozzová, J. Ol’ha, R. Trem-
beckỳ, S. Benkner, and J. Filipovič, “A benchmark set of
highly-efficient cuda and opencl kernels and its dynamic
autotuning with kernel tuning toolkit,” Future Generation
Computer Systems, vol. 108, pp. 161–177, 2020.

[70] J. Huang, C. D. Yu, and R. A. v. d. Geijn, “Strassen’s
algorithm reloaded on gpus,” ACM Transactions on
Mathematical Software (TOMS), vol. 46, no. 1, pp. 1–
22, 2020.

[71] M. Korch and T. Werner, “Accelerating explicit ode
methods on gpus by kernel fusion,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 18,
p. e4470, 2018.

[72] J. Carabaño, J. Westerholm, and T. Sarjakoski, “A com-
piler approach to map algebra: automatic parallelization,
locality optimization, and gpu acceleration of raster spa-
tial analysis,” GeoInformatica, vol. 22, no. 2, pp. 211–
235, 2018.

[73] N.-P. Tran, M. Lee, and D. H. Choi, “Memory-efficient
parallelization of 3d lattice boltzmann flow solver on a
gpu,” in 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC). IEEE, 2015, pp.

https://openreview.net/forum?id=VdLEaGPYWT
https://openreview.net/forum?id=VdLEaGPYWT
https://github.com/NVIDIA/cuda-samples
https://leetgpu.com/challenges
https://leetgpu.com/challenges
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

315–324.
[74] W. Qiu, Z. Gong, Y. Guo, B. Liu, X. Tang, and Y. Yuan,

“Gpu-based high performance password recovery tech-
nique for hash functions.” J. Inf. Sci. Eng., vol. 32, no. 1,
pp. 97–112, 2016.

[75] P. N. Q. Anh, R. Fan, and Y. Wen, “Balanced hashing
and efficient gpu sparse general matrix-matrix multipli-
cation,” in Proceedings of the 2016 International Con-
ference on Supercomputing, 2016, pp. 1–12.

[76] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli,
“Sparse matrix-matrix multiplication on modern archi-
tectures,” in 2012 19th International Conference on High
Performance Computing. IEEE, 2012, pp. 1–10.

[77] A. A. Abdelrahman, M. M. Fouad, H. Dahshan, and
A. M. Mousa, “High performance cuda aes implementa-
tion: A quantitative performance analysis approach,” in
2017 Computing conference. IEEE, 2017, pp. 1077–
1085.

[78] G.-J. van den Braak, B. Mesman, and H. Corporaal,
“Compile-time gpu memory access optimizations,” in
2010 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation. IEEE,
2010, pp. 200–207.

[79] M. Bauer, H. Cook, and B. Khailany, “Cudadma: opti-
mizing gpu memory bandwidth via warp specialization,”
in Proceedings of 2011 international conference for
high performance computing, networking, storage and
analysis, 2011, pp. 1–11.

[80] T. Honda, Y. Ito, and K. Nakano, “A warp-synchronous
implementation for multiple-length multiplication on the
gpu,” in 2015 Third International Symposium on Com-
puting and Networking (CANDAR). IEEE, 2015, pp.
96–102.

[81] J. D. Garvey and T. S. Abdelrahman, “A strategy for
automatic performance tuning of stencil computations
on gpus,” Scientific Programming, vol. 2018, no. 1, p.
6093054, 2018.

[82] D. Yan, W. Wang, and X. Chu, “Demystifying tensor
cores to optimize half-precision matrix multiply,” in 2020
IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2020, pp. 634–643.

[83] M. M. H. Opi, S. Khan, and M. F. Rahman, “Acceler-
ating bangla nlp tasks with automatic mixed precision:
Resource-efficient training preserving model efficacy,”
arXiv preprint arXiv:2512.00829, 2025.

[84] E. Nyamsuren, “Evaluating quantized large language
models for code generation on low-resource language
benchmarks,” arXiv preprint arXiv:2410.14766, 2024.

[85] P. K. Radtke and T. Weinzierl, “Compiler-supported
reduced precision and aos-soa transformations for het-
erogeneous hardware,” arXiv preprint arXiv:2512.05516,
2025.

[86] J. Li, D. Guo, D. Yang, R. Xu, Y. Wu, and J. He,
“Codei/o: Condensing reasoning patterns via code input-
output prediction,” arXiv preprint arXiv:2502.07316,
2025.

[87] Y. Ding, J. Peng, M. Min, G. Kaiser, J. Yang, and
B. Ray, “Semcoder: Training code language models with

comprehensive semantics reasoning,” Advances in Neural
Information Processing Systems, vol. 37, pp. 60 275–
60 308, 2024.

[88] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A survey
on large language models for code generation,” arXiv
preprint arXiv:2406.00515, 2024.

[89] M. Du, L. A. Tuan, Y. Liu, Y. Qing, D. Huang, X. He,
Q. Liu, Z. Ma, and S.-k. Ng, “Afterburner: Reinforce-
ment learning facilitates self-improving code efficiency
optimization,” arXiv preprint arXiv:2505.23387, 2025.

[90] J. Yang, X. Liu, W. Lv, K. Deng, S. Guo, L. Jing, Y. Li,
S. Liu, X. Luo, Y. Luo et al., “From code foundation
models to agents and applications: A comprehensive
survey and practical guide to code intelligence,” arXiv
preprint arXiv:2511.18538, 2025.

[91] Y. Akhauri, X. Song, A. Wongpanich, B. Lewandowski,
and M. S. Abdelfattah, “Regression language models for
code,” arXiv preprint arXiv:2509.26476, 2025.

	Introduction
	Survey Method

	Background and Preliminaries
	Hardware Design of Accelerators
	Operating Models of Accelerators
	Python API Invocation
	C++ ATen Dispatching
	Kernel Launch
	GPU Hardware Execution

	Efficiency Bottlenecks of Kernels in DL Software Stacks
	Problem Definition
	Requirements for Kernel Optimization Methods

	Evaluation
	Existing Evaluation Benchmarks
	Challenges in Benchmarking
	Roadmap for Advancing Benchmarking

	Kernel Generation and Optimization Techniques
	Single-Agent Systems
	Multi-Agent Systems
	Training-based Methods
	Challenges in LLM-Based Kernel Generation Methods

	Roadmap for Advancing LLM-Based Kernel Generation
	Integrating Human Expertise
	Mathematical Equivalence Transformations
	Data Locality Optimization
	Hardware Instruction Optimization

	Adapting Technical Advances in General-Purpose Code LLMs

	Conclusion

