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Constructing large language models (LLMs) is labor-intensive and computationally unfriendly due to the
requirement for large-scale and high-quality datasets. This paper presents a comprehensive survey of building
LLMs with limited data to tackle the above challenges. It covers 116 papers, where 18 works focus on the
pre-training process, and 98 works lie in the fine-tuning process. This survey: (i) unifies the problems and
terminologies associated with data-efficient LLM training, (ii) systematically analyzes techniques proposed for
identifying the most important data samples for LLM building, and (iii) highlights the pitfalls and research
opportunities in this domain.
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1 Introduction

Large Language Models (LLMs) have emerged as a promising avenue for artificial general intelli-
gence (AGI), demonstrating remarkable capabilities across diverse application domains, including
information retrieval [141], automated programming [70], and video generation [137]. Given this
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success, both academia and industry have joined the race to develop more representative and
powerful LLMs.

However, since the capability of LLMs is predicated on scaling laws [47], which link model
capability to massive investments in training data and computational resources, training LLMs with
competitive capability is challenging due to the two primary resource-intensive phases, pre-training
and fine-tuning. Pre-training typically requires petabyte-scale, multi-source datasets drawn from
diverse sources such as web crawls, books, source code, and scholarly articles, thereby incurring
substantial computational overhead. Fine-tuning (e.g., instruction tuning, alignment) also requires
high-quality domain-specific datasets to guide LLMs in learning this domain knowledge. Such
large-scale, high-quality datasets incur huge costs for researchers and developers during both the
preparation and model training phases, hindering the development of LLMs in practice, especially in
resource-constrained institutions. For instance, data preparation of BigCodeBench [143] required a
year-long collaboration involving 20 expert annotators to rigorously construct. Conversely, training
Llama 3.1 405B consumed approximately 31 million H100 GPU hours to process 15.6 trillion tokens,
resulting in a compute cost estimated at over $100 million [25].

To address these challenges, a promising research direction has been proposed and explored: data-
efficient LLM training. The central hypothesis of data efficiency here is that the information density
and relevance of the training data are the true drivers of the capability of LLMs. This perspective
suggests that massive datasets often contain significant redundancy, noise, and low-utility samples
that marginally contribute to learning while increasing computational costs. Therefore, data-
efficient construction aims to identify the minimal sufficient set of datasets for LLMs to learn target
distributions and capabilities.

In this context, this paper provides a comprehensive survey of data-efficient LLM training.
We define it as the systematic methodology of building or adapting LLMs through the rigorous
optimization of both pre-training and fine-tuning data utility. In total, we collect 116 works published
between 17 Apr 2020 and 7 Aug 2025. Of these, 18 works focus on data efficiency in the pre-training
process (including one work that targets both pre-training and fine-tuning stages), 98 works
address the fine-tuning process. After excluding 9 benchmarks and empirical studies, we focus on
the remaining 107 technique-oriented works. According to their design spirit, we further divide
them into surrogate model-based methods (78) and surrogate model-free methods (29). Ultimately,
the goal is to enable the construction of high-performance LLMs with significantly reduced data
volume and computational expenditure.

Based on the analysis of existing works, we reveal pitfalls and provide future research directions.
For example, of 87 surrogate-based works, only 17 works reported the external cost of preparing
and using surrogate methods, hindering the practical deployment of their methods. Moreover, only
44 works conducted robustness evaluation of their trained LLMs. It is unclear if there is a trade-off
between cost reduction and robustness degradation. In the future, research should focus more on
multi-objective and distribution-aware optimization, as well as on theoretical guarantees.

Comparison with existing surveys. Some survey works have begun to address the resource
constraints of machine learning. For example, Zha et al. [121] established the foundational principles
of data-centric Al. However, their scope encompasses general machine learning modalities, such as
computer vision and tabular data, and lacks a concentrated focus on the unique token-level dynamics
and scaling behaviors inherent to LLMs. Subsequent work by Albalak et al. [3] provided a compre-
hensive review of data selection, specifically unifying methods across language model development
stages under a taxonomy based on utility functions and selection mechanisms. Different from their
work, we focus more on the two phases of pre-training and fine-tuning, systematically categorize
each work based on their surrogate model dependency and data selection criteria, and provide a
comparison of methods designed for these two phases. Luo et al. [68] explored efficient training
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from a data-centric perspective. While their analysis predominantly emphasizes post-training and
alignment stages, it provides limited granularity on the foundational pre-training phase. To the best
of our knowledge, our survey is the first one to systematically categorize data-efficient training and
fine-tuning methods by (i) their reliance on external models versus heuristic approaches, and (ii) the
specific sampling and filtering mechanisms employed at the method level. This structured approach
clarifies the trade-offs between computational overhead and data quality, offering a comprehensive
roadmap for building high-performance LLMs under constrained resources.
To summarize, the main contributions of this study are as follows:

o Unified problem definition: We establish a unified problem definition of data-efficient LLM
training.

e Systematic literature analysis: We conduct a thorough survey of 116 articles. We reveal pitfalls
in existing works and provide good practice guidance.

e Vision: We present promising research opportunities to facilitate this domain.

The remainder of this paper is organized as follows. Section 2 introduces key preliminaries. Section
3 defines the problem of data-efficient LLM training. Section 4 details our methodology for paper
collection. Section 5 presents a systematic summarization and analysis of the collected literature,
followed by a broader Discussion in Section 6. Section 7 highlights key research opportunities.
Finally, Section 8 concludes the survey.

2 Preliminaries

2.1 Training of LLM

Pre-training. Based on pre-training, the model learns general knowledge from the large-scale data
collected in the previous step. This process requires massive computational resources, often using
supercomputers composed of thousands of high-performance GPUs and high-speed networks, and
can take several weeks or even months to train the deep neural network parameters and build the
foundation model. For instance, GPT-3 [9] was trained on over 1,000 NVIDIA GPUs over a prolonged
period. To facilitate the pre-training, multiple techniques have been proposed with promising
results, such as Zero Redundancy Optimizer (ZeRO) [85], Sparse Mixture-of-Experts (MoE) [27],
FlashAttention [19], which are mainly designed to improve training efficiency, while some of them
also benefit inference. The pre-trained models can be further fine-tuned for downstream tasks.
Fine-tuning. Fine-tuning is the process of adjusting the parameters of LLMs to adapt them to
specific tasks. It does not train the model from scratch, but uses a pre-trained model as a starting
point, preserving its existing general knowledge. On this basis, the model is further trained on
domain- or task-specific datasets to optimize performance in particular scenarios, such as finance or
healthcare. This approach reduces computational costs and allows leveraging cutting-edge models.
For example, the famous LLM DeepSeek-Coder-V2 [139] is fine-tuned from DeepSeek-V2 [63].

2.2 Data Selection

Data Selection is the process of identifying and curating an optimal subset of data from a large
source data pool. It can affect both the training and testing phases of the LLM construction pipeline.
In this work, we focus on data selection for training and fine-tuning. That is, by training on a
smaller, higher-utility subset, data selection aims to achieve a target level of model capability while
drastically reducing the associated data labeling and computational costs. In the remaining parts,
we use data selection as the unique terminology that encompasses several related processes:

e Data Filtering/Curation: The process of removing low-quality, redundant, toxic, or privacy-
compromising data from a large corpus. This is often a technique in the pre-training stage.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: January 2026.



111:4 Xinyang Liu, Qiang Hu et al.

e Data Sampling: The active selection of a subset of high-value data points from a larger pool.
This is common in fine-tuning, where techniques like active learning [89] are used to identify
the most informative instruction-response pairs.

3 Problem Definition

In this section, we formally define the problem of data-efficient LLM training, including both
pre-training and fine-tuning processes.

Given an LLM M, a source data corpus D/, a test data corpus Dy, a budget constraint
Budget, data-efficient LLM training is a problem of selecting a subset Dsejec; of Dpoor such that
|Dseiect| < Budget and Dgejeer = arg maxp,cp ., 0 (M’, Dyesy) where M’ is M trained with Dgejecr
and p is a capability measurement.

In pre-training, M is the initialized LLM and D, is the collected pre-training raw data. In
fine-tuning, M is a pre-trained LLM and D,,,; is the domain-specific fine-tuning dataset.

4 Paper Collection
4.1 Survey Scope

Our survey focuses on data-efficient training of LLMs. Here, data-efficient indicates training or fine-
tuning LLMs with a subset of the available data pool to reduce the data processing and computation
costs, as detailed in Section 3. We use the following three selection criteria to collect papers. A
paper must satisfy at least one of the criteria to be included in our survey.

(1) The paper proposes a new technique that targets data-efficient LLM construction.

(2) The paper empirically studies/analyzes existing data-efficient LLM construction techniques.

(3) The paper introduces benchmarks, datasets, or criteria that are specifically designed for data-
efficient LLM construction.

As we focus on language models, some works that also lie in the data-efficient scope but focus on
other tasks, e.g., vision tasks, are not included in our survey. For instance, seminal works on coreset
selection [76], data selection via proxy models [16], and analysis of example forgetting [96] are
primarily benchmarked on image classification tasks and are thus outside the scope of this survey.

4.2 Paper Collection Workflow

We follow previous survey works [13, 39, 45, 49, 132], to design our paper collection workflow. As
illustrated in Figure 1, the workflow has three key steps: keywords-based paper search, multi-stage
paper filtering, and snowballing. To conduct the first step, we design the following keywords.

e language model + active learning | subset/data selection | influence function | data sampling |
data filtering | fewer data | label-efficient | data-efficient | annotation efficient

Based on the keywords, the automatic paper search process is employed to collect relevant works
from five commonly used resources: Google Scholar, IEEE Xplore, ACM, Arxiv, and DBLP. This
initial broad retrieval yields a total of 27,635 papers, with Google Scholar contributing the largest
set (17,500 papers), followed by ACM (4,484 papers) and IEEE Xplore (3,371 papers).

After that, a rigorous multi-stage study selection protocol is applied to filter the papers. We first
screen papers by title, significantly reducing the pool to 2,251 candidates. Subsequent filtering by
venue quality further narrows the selection to 1,163 papers. We then perform a manual abstract
review to verify alignment with the survey’s scope, resulting in 297 papers. At the same time,
we filter studies with fewer than eight pages to remove short papers, leaving 251 papers. After
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Fig. 1. Study collection and selection.

removing duplicate entries across databases, which leaves 199 unique papers, a full-text scan is
conducted to identify the primary studies, resulting in a core set of 103 papers.

Finally, to mitigate the potential limitations of keyword-based retrieval and ensure the com-
prehensiveness of our survey, we employ snowballing, a complementary search strategy that
iteratively expands the pool of literature by exploring the citation networks of the selected primary
studies. This process follows the standard guidelines for performing forward and backward searches.
Forward snowballing involves examining papers that cited our primary studies, identifying 5,387
candidates, while backward snowballing entails reviewing the reference lists of the selected papers,
yielding 1,368 candidates. From this combined pool of 6,755 papers, we apply the same screening
criteria used in the last phase. This rigorous expansion identifies 13 additional relevant papers.
Consequently, this survey comprises a total of 116 papers.

4.3 Statistics of Collected Papers

Publication Trend. Figure 2a reveals a distinct trend of accelerating research activity. The initial
period from 2020 to 2022 represents a preliminary phase in this specific domain, with a consistent
but low volume of two papers identified in each year (2020, 2021, and 2022). A noticeable increase
occurred in 2023, where the number of identified papers rose to 9. The most significant expansion
is observed in the most recent years; the volume of literature grew to 41 papers in 2024 and peaked
at 60 papers in 2025. This trajectory indicates that the vast majority of the research within our
collected corpus (approximately 87%) has emerged within the last two years, accompanied by the
boom of LLMs, underscoring the topic’s rapidly growing urgency.

Venue Distribution. The publication venues of our covered studies are depicted in Figure 2b.
49 papers originate from arXiv, reflecting the fast-paced nature of LLM research, where rapid
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Fig. 2. Statistical overview of the collected papers.

dissemination often precedes formal peer review. Among peer-reviewed venues, the International
Conference on Learning Representations (ICLR) and the Association for Computational Linguistics
(ACL) are the leading contributors, publishing 12 and 13 papers, respectively. Other significant
contributions are identified in EMNLP and NeurIPS, publishing 9 and 8 papers respectively, followed
by ICML (7 papers). The remaining papers are distributed across NAACL (4 papers), COLM (3
papers), and other venues such as SIGIR and ICSE (in total of 11 papers). This distribution suggests
that while the field relies heavily on pre-prints for speed, it is well-represented across the most
prestigious conferences in both general machine learning and natural language processing.

5 Paper Summarization

We first categorize these works from two perspectives: the surrogate model dependency and the
data selection criteria. Then, we introduce each work in detail.

Surrogate Model Dependency. Based on the usage of surrogate models, existing data-efficient
techniques can be divided into surrogate-free methods and surrogate-based methods.

(1) Surrogate-Free Methods: The data selection process is self-contained and relies exclusively on
the target model itself. Data priority is determined by analyzing the target model’s internal
states, such as its parameters, outputs, or training dynamics.

(2) Surrogate-Based Methods: These methods employ an external model distinct from the target
model to generate data selection scores. Existing works have considered different types of
surrogate models:

o Representation: The surrogate functions as a fixed encoder (such as a pre-trained BERT) that
generates embeddings to facilitate downstream selection strategies like clustering.

e Scoring: The surrogate serves as a powerful large language model (e.g., GPT-4) that directly
evaluates data samples based on perceived quality, complexity, or relevance.

o Utility Prediction: The surrogate operates as a separate, often smaller, model explicitly trained
to predict the utility of specific data samples for training the target model.

The choice between these two types of data selection involves critical trade-offs. Surrogate-based
methods can offer superior selection precision by leveraging a more powerful model, but they
introduce system complexity, computational overhead, and potential bottlenecks. Surrogate-free
methods are more tightly integrated into the target model training loop but are bounded by the
capabilities of the model.

Selection Criteria Categorization. Beyond the architectural choice of how a selection score is
computed (i.e., surrogate dependency), existing methods can be further categorized into different
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groups based on what property of the data is being measured. The choice of method, or selec-
tion criterion, reflects the underlying hypothesis about what constitutes a valuable data sample.
Specifically, we summarize five types of selection methods: training dynamics and influence-based
methods, uncertainty methods, data diversity-based methods, intrinsic data quality-based methods,
and heuristic and composite methods.

(1) Training dynamics and influence. These methods are derived directly from the model’s interac-
tion with the data during the training process [8, 106].

e Optimization and gradient-based methods. This kind of method considers sample loss as a
common indicator of training difficulty.

e Gradient. Methods treat the model gradient as the selection reference, such as its norm or its
alignment with the average batch gradient.

e Data impact. Methods estimate the influence of data samples on the model’s parameters or
its performance on a separate validation set (e.g., via influence functions).

(2) Uncertainty. These methods prioritize data about which the model is least confident. The
hypothesis is that resolving this uncertainty provides the highest information gain. Common
methods include output entropy for classification [80, 125].

(3) Data diversity. This category focuses on the properties of the selected subset as a whole, rather
than just individual sample scores [62, 98].

e Diversity. Methods are designed to ensure the selected subset covers the largest portion of
the feature space of the original dataset. This is often achieved by avoiding the selection of
samples that are too similar to already-selected data.

o Representativeness. Methods that select samples near the centroids of data clusters, to capture
the core of the distribution.

(4) Intrinsic data quality. These methods assess the inherent quality of the data, often independent
of the target model. This evaluation typically requires a powerful surrogate model to score
textual attributes independent of the model’s training state. [14, 136].

(5) Composite and multi-objective strategies. Some research introduces novel or composite methods.
These methods often combine criteria or are custom-engineered heuristics designed to capture
a specific notion of data value not covered by the categories above [73, 127].

The distribution of our collected works based on our taxonomy reveals a significant predomi-
nance of surrogate-based strategies, which account for 78 papers, compared to 29 surrogate-free
approaches and 9 empirical benchmarks. We will introduce each work based on its surrogate model
dependency and selection criteria separately, followed by 9 works that build benchmarks or conduct
empirical studies to support data-efficient construction of LLMs.

5.1 Pre-Training

Table 1 presents the distribution of our collected works based on our taxonomy.
5.1.1 Surrogate-Based Methods

5.1.1.1 Training Dynamics and Influence

Brandfonbrener et al. [8] introduced conditional loss reduction filtering (CoLoR-Filter), a targeted
data selection method derived from an empirical Bayes-inspired objective. CoLoR-Filter utilizes a
pair of small auxiliary models as surrogates: a marginal (or prior) model trained on general data,
and a conditional model obtained by fine-tuning this auxiliary model on a small dataset from the
downstream task. Then, the data selection is based on the difference in log-likelihood between these
two models, prioritizing examples where the conditional model achieves significantly lower loss
than the marginal model. Yu et al. [120] addressed the problem that static data selection methods
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Table 1. Statistics of different data selection studies (pre-training).

Surrogate Model Dependency Selection Criteria Categorization References
Training Dynamics and Influence -
Uncertainty -

Surrogate-Free Methods Data Diversity [86]

Intrinsic Data Quality -
Composite and Multi-Objective Strategies —

Training Dynamics and Influence [8], [120], [140], [33]
Uncertainty [125]
Surrogate-Based Methods Data Diversity [26]
Intrinsic Data Quality [32], [103], [59], [142], [50], [114], [73], [55]

Composite and Multi-Objective Strategies [88], [93], [54]

fail to capture the dynamically shifting data preferences of LLMs during pretraining, and proposed
model-aware data selection with data influence models (MATES), a framework where a small data
influence model continuously adapts to the pretraining model’s evolving state to select the most
effective data on-the-fly. The method first probes the main model locally to collect oracle data
influence, quantified as the change in loss on a reference task after a single training step on a specific
data point. This oracle data is then used to fine-tune the small data influence model for predicting
the best data for the next training stage.

Gu et al. [33] designed MiniPLM, which enhances pre-training quality and efficiency through
a teacher-guided Difference Sampling strategy. Unlike static filtering, it adaptively refines the
data distribution by targeting the relative difficulty of instances, effectively filtering noise and
down-sampling saturated simple patterns. By eliminating ineffective gradient updates from overly
simplistic or noisy data at the early stages of pre-training, this approach significantly boosts the
effective sample throughput. This active management of training dynamics exposes the student
model to a more concentrated stream of diverse and complex knowledge, thereby facilitating faster
convergence and better generalization across diverse model architectures. More recently, Zhu et
al. introduced ToReMi [140], a two-stage, topic-aware framework that dynamically reweights
pre-training data based on topical associations and training dynamics. In the first stage, it priori-
tizes challenging topics by increasing weights for high-loss categories to accelerate foundational
knowledge acquisition. In the second stage, it attenuates weights for persistently high-loss topics
to minimize noise interference. The framework employs LLM-based topic annotation through
clustering and either generating custom labels or selecting from existing taxonomies.

5.1.1.2 Uncertainty

Zhang et al. [125] proposed SIEVE, a system designed to solve the prohibitive cost of using high-
performance models like GPT-4o for filtering web-scale LLM pretraining data. SIEVE’s method
involves a novel stream-based active learning algorithm that efficiently distills GPT-40’s filtering
decisions into a lightweight classification model, specifically using a True Risk Minimizer (TRM)
threshold to handle the severe class imbalance found in filtering tasks. Extensive experiments
demonstrate that SIEVE matches GPT-40’s filtering accuracy, confirmed by both automatic and
human evaluations, while reducing the cost by over 99%.

5.1.1.3 Data Diversity

Fan et al. [26] proposed diversified file selection (DiSF), an algorithm that employs a pre-trained
surrogate model as a feature extractor to map text samples into an embedding space, where it
selects files that minimize the Frobenius norm of the feature covariance matrix to ensure diversity.
DiSF addresses the diversity dilemma observed in prior domain-similarity-based selection methods,
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where focusing on similarity to high-quality domains improves domain-specific performance
but degrades generic capabilities due to reduced feature diversity. By prioritizing decorrelated
samples within the surrogate model’s embedding space, DiSF effectively prevents this collapse and
significantly enhances overall model capabilities across diverse benchmarks.

5.1.1.4 Intrinsic Data Quality

Li et al. [55] proposed a data pre-processing framework called generative deduplication (GD).
This framework trains a generative model using a self-supervised keyword prediction task for only
one epoch, integrating Time-dimensional Gaussian Noise (TGN) to increase training difficulty and
limit the model’s ability to learn from non-duplicate samples. During inference, texts for which the
model accurately predicts the target keyword are identified as semantically duplicate and removed.
Experiments show the GD framework effectively reduces training samples by 50.9% and time by
42.9% while improving downstream task performance.

Gu et al. [32] proposed PMP-based data selection (PDS), a framework that formulates pre-
training data selection for language models as a generalized optimal control problem. PDS leverages
Pontryagin’s Maximum Principle to derive necessary theoretical conditions characterizing optimal
data selection based on LM training dynamics, which are then approximately solved on a proxy
dataset to compute quality scores used for training a data scorer model. PDS can reduce data
demand by up to 1.8 times in data-constrained scenarios. Wettig et al. [103] introduced QuRating, a
method for selecting pre-training data that captures human intuitions about text quality, moving
beyond simple heuristics. The approach uses GPT-3.5-turbo to generate pairwise judgments on
texts based on four abstract criteria: writing style, facts & trivia, educational value, and required
expertise. Then, a QuRater model is trained on these 250,000 judgments for each criterion to learn
scalar quality ratings, which are used to annotate the quality of a 260 B token corpus.

Similar to QuRating, to address the limitation of methods that rely on heuristics or single
quality signals, Xu et al. [59] proposed flexible integration of data quality ratings for effective
pretraining (FIRE). FIRE integrates ratings from multiple diverse data quality raters by first aligning
their scores into a unified space and then integrating these aligned scores, weighting them by both
rater reliability and orthogonality derived via PageRank. Evaluation demonstrated that FIRE is
2.5 times faster than random selection. Furthermore, to address limitations of single-dimensional
data selection methods for LLM pre-training, which often overlook the multifaceted nature of
data quality, Zhuang et al. [142] introduced Meta-rater, a multi-dimensional framework that first
defines four new quality metrics: professionalism, readability, reasoning, and cleanliness (PRRC).
The method then learns the optimal weightings for these and 21 other quality scores by training
numerous small proxy models on differently weighted data subsets and fitting a regression model
to their resulting validation losses.

As most of the existing methods overlook the specific domain nuances required for mathematical
reasoning, Li et al. [50] designed mathematical data selection via skill graphs (MASS). MASS first
constructs a skill graph by prompting a strong LLM to extract mathematical skills and their co-
occurrence relationships from a high-quality reference dataset. This graph is then used to score
data in a large target dataset by aggregating semantic similarities, prioritizing texts that cover
important individual skills (nodes) and skill compositions (edges). Evaluation showed that MASS
can reduce 50% to 70% of token usage. More recently, Maharana et al. [73] introduced D? PRUNING,
which models the dataset as an undirected graph where nodes are initialized with difficulty scores
and edges are weighted by embedding distance. The method uses forward message passing to
update node scores based on their neighbors, balancing difficulty and density, and then uses reverse
message passing during selection to down-weight neighbors of selected nodes to ensure diversity.
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This joint optimization approach allows D? PRUNING to outperform state-of-the-art methods on
vision and NLP datasets at pruning rates up to 70%.

Focusing on programming tasks, Yang et al. [114] proposed synthetic corruption informed
pruning (SCIP), a method that first identifies the characteristics of low-quality code in an embedding
space by analyzing synthetically corrupted data (e.g., removing brackets or altering conditionals).
This analysis revealed that corrupted data tends to move to smaller embedding clusters or farther
from cluster centroids. Based on this insight, SCIP prunes the dataset by ranking and removing
a fraction of data points based on their small cluster size and large distance from the centroid.
Experiments demonstrated that SCIP is twice as fast as basic pre-training,.

5.1.1.5 Composite and Multi-Objective Strategies
Some works considered combining different selection criteria to boost data selection. Sachdeva et
al. [88] proposed ASK-LLM, a method that combines quality and coverage for data selection.
Here, quality is quantified by an instruction-tuned proxy LLM’s probability of a yes response.
For coverage, ASK-LLM introduces DENSITY sampling, which models the data distribution using
kernel density sums and then applies Inverse Propensity Sampling (IPS) to select a diverse sample.
In an extensive comparison of 19 samplers, the coverage-based DENSITY method successfully
recovered full-data performance, while the quality-based ASK-LLM consistently outperformed
full-data training, converging up to 70% faster even when rejecting 90% of the original dataset.

Shum et al. [93] proposed predictive data selection (PRESELECT). The core idea is to quantify
a sample’s predictive strength: the degree to which a model’s compression loss on that sample
correlates with the model’s downstream benchmark performance. By training a simple fastText
scorer on a small seed set of documents with high and low predictive strength, PRESELECT can
scalably filter enormous datasets. Li et al. [54] considered combining data generation and data
selection to search for better pre-training data, and designed a framework for rule-based data
selection. Concretely, it uses an LLM to first generate a diverse pool of data quality rules. The core
of the method involves rating a data batch against these rules to create score vectors, then applying
a Determinantal Point Process (DPP) to select a final subset of independent rules based on the
orthogonality of these vectors.

5.1.1.6 Surrogate Model Analysis

Table 2 summarizes the distribution of the surrogate model used in the above methods. The
choice of surrogate models is quite diverse (evenly distributed). For representation-based surrogate
models, the BERT family is the most popular. And the GPT family and the LLaMA family are most
used as scoring and selection surrogate models, respectively.

5.1.2 Surrogate-Free Methods

Only one diversity based work did not rely on sur- Table 2. Usage of Surrogate Models
rogate models for pre-training data selection. Renduch-
intala et al. [86] proposed INGENIOUS, which elects a Surrogate Model Component #Works
diverse and representative subset by maximizing the Fa- Representation Model P
cility Location submodular function on selected data sam- Scoring Model 8
Selection Model 7

ples. In addition, it overcomes scalability challenges by
partitioning the data into random blocks, reducing the
similarity kernel’s memory footprint. Experiments showed that INGENIOUS can reduce training
costs by 72%.

5.1.3 Dataset and Model Analysis
This part analyzes the datasets and models that the researchers focused on during their evaluation
of methods during pre-training.
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Table 3. Summary tasks and their used works.

Task References

Instruction-Response Pairs  [142], [32],

Text Classification [73], [140], [86], [125]

Q&A Pairs (8], [26], [32], [120], [93], [140],[50], [33]

Text Corpus [86], [125], [120], [103], [32], [59], [26], [54], [114]
Programming [55], [114], [93]

As shown in Table 3, existing works mainly focus on five types of tasks: Question & Answer
(Q&A) Pairs, Text Corpora, Instruction-Response Pairs, Text Classification, and Code. Text Corpus
is the most commonly used task for pre-training, accounting for 34.62% of all tasks. Moreover, the
presence of specialized Code datasets (e.g., CodeSearchNet, The Stack) and Instruction-Response
pairs (e.g., Alpaca, WizardLM) indicates that data selection research is expanding beyond general
text pre-training into domain-specific and alignment-stage optimization [114, 142].

In terms of model architectures, the usage of models ranges from small LMs to state-of-the-art
LLMs. The LLaMA family (including versions 1, 2, 3, and 3.1) emerges as the most ubiquitous
testbed [54, 93, 142]. This is complemented by the frequent use of the Pythia suite [26, 120], which
is often favored in research contexts for its transparency in training dynamics. The analysis also
highlights a temporal span in model selection; researchers continue to utilize established baselines
like BERT-base and GPT-2 [86, 140] alongside highly capable recent models such as Qwen-2.5,
Mistral, and GPT-4o [50, 59]. This diversity indicates that while the field is rapidly adopting newer
architectures, there remains a reliance on well-understood, smaller models.

5.2 Fine-Tuning

Table 4. Statistics of different data selection studies(fine-tuning).

Surrogate Model Dependency Selection Criteria Categorization References
Training Dynamics and Influence [18], [133], [131], [102], [79], [138], [21], [111], [112], [53], [46], [124]
Uncertainty [80], [128], [134], [101]
Surrogate-Free Methods Data Diversity [92], [2]
Intrinsic Data Quality [100]
Composite and Multi-Objective Strategies [99], [22], [44], [81], [74].[5], [115], [97], [126]
Training Dynamics and Influence [108], [1], [60], [106], [4], [105], [90], [51], [136]
Uncertainty [87]
Surrogate-Based Methods Data Diversity [7], [20], [117], [62], [98], [110], [118]
Intrinsic Data Quality [14], [130], [12], [71], [82]

[119], [64], [94], [31], [69], [56], [127], [10], [78], [123], [11], [83], [95],
Composite and Multi-Objective Strategies [30], [15], [24], [122], [35], [6], [34], [84], [135], [57], [109], [38], [113],
[23], [75], [52], [58], [29], [37], [28], [72], [104], [65], [129], [61], [67]

5.2.1 Surrogate-Based Methods

5.2.1.1 Training dynamics and influence

Xu et al. [108] introduced Bayesian data point selection (BADS), a framework that treats data
selection as a posterior inference problem. BADS utilizes an auxiliary weighting network as a
surrogate model to predict importance weights for training examples, treating both the main model
parameters and these instance-wise weights as random variables. By inferring their joint posterior
using stochastic gradient Langevin dynamics (SGLD) sampling, the method effectively aligns the
training data distribution with a small, high-quality meta-set.

Zhou et al. [136] introduced data selection via implicit reward (DavIR), to quantify the learnability
of a data point based on the relative reduction in loss between a pre-trained model and a reference
model fine-tuned on the full dataset. Experiments demonstrated that models fine-tuned on only 6%
of the dataset selected by DavIR achieve superior performance compared to models trained on the
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full dataset. Agarwal et al. [1] proposed NN-CIFT to leverage a surrogate neural network, termed
InfluenceNetwork, to estimate data influence scores. Here, the influence score is quantified as the
output of InfluenceNetwork, which takes the concatenated embeddings of the training and target
data points as input. InfluenceNetwork is trained on a small subset of ground-truth influence values
derived from LLMs and subsequently employed to predict influence scores for the remaining dataset.
Empirical evaluations demonstrated that NN-CIFT achieves a data valuation cost reduction of up
to 99%. Lin et al. [60] introduced LEAD, a framework to utilize multiple training information for
data selection. Specifically, it first employs an offline dual-level clustering strategy, using fixed task-
specific embeddings to group semantically similar instructions. During training, LEAD integrates a
coarse-to-fine selection process: a multi-armed bandit (MAB) mechanism dynamically prioritizes
these pre-computed clusters, and then combines instantaneous loss, historical smoothing, and
gradient-based approximation to identify high-utility samples within the selected cluster. Evaluation
demonstrated that LEAD improves model performance by up to 10.8% using only 2.5% data.

Addressing the high computational cost bottleneck of gradient-based data valuation, Ananta et
al. [4] introduced quantized low-rank gradient similarity search (QLESS), a data selection framework
that integrates absmax-based quantization with LoRA-based random projection to compress the
gradient datastore used for influence estimation. Evaluation highlighted that QLESS reduces memory
usage by up to 16X while maintaining downstream fine-tuning performance. Recently, Shen et
al. [90] proposed safety-enhanced aligned LLM fine-tuning (SEAL) to use bilevel optimization to
learn a data ranker for fine-tuning. This method addresses the critical problem where fine-tuning
LLMs on task-specific data, even benign samples, can significantly compromise the model’s pre-
established safety alignment. SEAL formulates an optimization problem where the data selector is
trained to up-rank safe, high-quality data and down-rank unsafe samples, ensuring the resulting
fine-tuned model still fits a separate, safe alignment dataset.

In addition to domain-specific fine-tuning, multiple works have addressed the problem of data-
efficient instruction tuning, which is a specific type of fine-tuning. Xia et al. [106] proposed low-rank
gradient similarity search (LESS). The core idea of LESS is to use gradients as an influence function
to guide the data selection, where cosine similarity is employed to normalize gradients, mitigating
a performance-hurting bias against variable-length instruction data. Li et al. [51] designed selective
reflection-tuning, a teacher-student collaboration paradigm for instruction selection. The pipeline
involves two phases: a Selective Instruction Reflection phase, where the student model uses the
instruction-following difficulty (IFD) score to select challenging instructions refined by the teacher,
and a Selective Response Reflection phase, where the student uses a novel reversed-IFD (r-IFD)
metric to select feasible and informative responses. After that, Wu et al. [105] propose ROSE, a
reward-oriented instruction data selection framework. To fill the gap of misalignment in existing
methods where minimizing next-token prediction loss often fails to correlate with actual task
performance, ROSE employs a surrogate model initialized on a small random subset to estimate
the gradient-based influence of training samples on a task-specific reward signal derived from
direct preference optimization (DPO) loss. Experiments demonstrate that training on just 5% of
data selected by ROSE achieves competitive results against the full dataset.

5.2.1.2 Uncertainty

Ru et al. [87] introduced adversarial uncertainty sampling in discrete space (AUSDS) for active
sentence learning. AUSDS leverages pre-trained language models to map discrete sentences into a
continuous latent space, where adversarial attacks are employed on labeled batch data to efficiently
identify regions near the decision boundary. Subsequently, k-nearest neighbor (KNN) search is
performed within the latent representations of the entire unlabeled corpus to retrieve actual text
samples residing in these high-uncertainty regions.
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5.2.1.3 Data Diversity

Bashar et al. [7] proposed the mixed aspect sampling (MAS) framework, an active learning
approach designed to mitigate the inherent linguistic bias of LMs by selecting a semantically
diverse training set. MAS is an ensemble of two classifiers: 1) one focusing on linguistic aspects
(using a fine-tuned LM), and 2) another on topical aspects (using a topic model). Based on this, it
categorizes unlabeled instances into agreed-minority, agreed-majority, and disagreed groups. By
applying cluster-based down-sampling to these groups, particularly prioritizing disagreed instances,
MAS efficiently identifies the most informative and diverse samples for human annotation.

Das et al. [20] introduced DEFT-UCS, which leverages a pre-trained embedding model (Sentence-
T5) as a surrogate to map input data into a latent space. This surrogate embedding allows the
framework to identify and sample a representative core-set encompassing both easy and hard
samples relative to cluster centroids. Based on DEFT-UCS, fine-tuning 32.5% of the original dataset
can achieve comparable or improved accuracy compared to fine-tuning with the full dataset. Similar
to DEFT-UCS, Yu et al. [117] proposed a diversity-centric framework utilizing k-means clustering
coupled with an iterative refinement strategy. The method employs a surrogate scoring model
to evaluate the quality gap between generated and reference responses, thereby dynamically re-
weighting clusters to prioritize high-value data regions and filter out noise during training. Other
works also leverage different diversity quantification metrics for data selection. Ling et al. [62] used
semantic entropy of outputs as a diversity indicator, and Wang et al. [98] utilized a surrogate model
to generate normalized weight gradients as data representations, which are then used to compute a
novel metric called log determinant distance that measures the diversity. Yang et al. [110] proposed
to employ Sparse AutoEncoders to measure data diversity based on activated features.

Addressing the problem that NLP models trained on data from one domain often fail to generalize
to other domains, Yu et al. [118] suggested focusing on inter-dependencies between samples rather
than just quality. They introduced three metrics to quantify the diversity of a dataset based on
sentence embeddings: Max Dispersion (sum of pairwise Cosine distances), Convex Hull Volume,
and Graph Entropy. To efficiently select a subset that maximizes these diversity metrics, the paper
proposes the diversity advanced actor-critic framework, a reinforcement learning approach that
uses an actor-critic model to select the most diverse samples.

5.2.14 Intrinsic Data Quality

Chen et al. [14] introduced ALPAGASUS to employ an LLM as an automatic evaluator to score
each data sample based on its response to the instruction with input token accuracy. ALPAGASUS
can provide a 5.7X training speedup based on their evaluation. Zhang et al. [130] introduced EDGE,
a framework centered on a newly proposed guideline effectiveness metric. Here, the guideline
indicates a summary of the key strategies or rules derived from an agent’s interaction trajectory.
EDGE evaluates the utility of guidelines using a surrogate model by comparing the cross-entropy
loss of generations conditioned on prompts with and without guidelines. Using EDGE can reduce
data requirements by up to 75% according to the evaluation. Moreover, Cao et al. [12]suggested using
natural language indicators (e.g., reward model scores) to evaluate data quality for the selection,
and Ma et al. [71] used neuronal activation states to quantify the data quality.

To address the problem of token-level noise in supervised fine-tuning, where uninformative,
redundant, or harmful tokens within samples can degrade model performance, Pang et al. [82]
proposed a generic token cleaning pipeline to evaluate each token’s quality. Here, quality is
measured by the loss disparity between a fixed base model and a reference model, utilizing either
a static warm-up model (fine-tuned on a small high-quality subset) or a self-evolving approach
where the latest updated model checkpoint serves as the reference model to refine the supervision
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signal. Different from previous works that focus on data quality, this work targets a finer-grained
notion of quality at the token level.

5.2.1.5 Composite and Multi-Objective Strategies
Similar to pre-training-targeted methods, multiple fine-tuning methods integrate different selection

Table 5. Overview of composite and multi-objective data selection strategies based on surrogate models
during the fine-tuning phase

Combination of Metrics (Strategy) Reference

Heuristics [72]

Training Dynamics and Influence & Data Diversity [69], [84], [113], [52], [61]
Training Dynamics and Influence & Intrinsic Data Quality [30

Training Dynamics and Influence & Heuristics [34], [29], [28]
Uncertainty & Data Diversity [119], [64]

Uncertainty & Intrinsic Data Quality [94]

Uncertainty & Heuristics [135]

Data Diversity & Intrinsic Data Quality [31], [10], [78], [123], [11], [83], [15], [75], [58], [37], [104], [67], [95]
Data Diversity & Heuristics [122], [35], [38], [65]
Intrinsic Data Quality & Heuristics [57], [109]

Training Dynamics and Influence & Data Diversity& Intrinsic Data Quality [23]

Training Dynamics and Influence & Data Diversity& Heuristics [129]

Uncertainty & Data Diversity & Intrinsic Data Quality [56], [127], [6]

Data Diversity & Intrinsic Data Quality & Heuristics [24]

criteria to facilitate the precision of data selection. These methods can be divided into 14 groups, as
shown in Table 5.

Heuristics. Witnessing the failure of existing internal computational dynamics-based data
selection methods, Ma et al. [72] proposed monosemantic neuronal activation-based data selec-
tion (MONA) to use a Sparse Autoencoder to disentangle activations into sparse, monosemantic
(single-concept) representations. This model-centric embedding is then combined with a Gener-
alized Jaccard similarity metric to select source data that aligns with the target task’s activation
patterns. Experimental evidence stated that 5% of fine-tuning data is enough when using MONA.

Training Dynamics and Influence & Data Diversity. Lv et al. [69] proposed the code adaptive
compute-efficient tuning (CodeACT) framework, which uses instruction-following score to measure
the influence, followed by clustering methods to select a high-quality, complex, and diverse data
subset. CodeACT can reduce training time by 78% and peak GPU memory usage by 27%. Lv et al.[84]
introduced reinforced adaptive instruction selection (RAISE), a dynamic framework that models
instruction selection as a sequential decision-making process optimized via reinforcement learning.
It employs a trainable acquisition function to estimate the dynamic value of each instruction by
processing state features such as instruction difficulty and semantics precomputed by an auxiliary
model (e.g., Llama-3.1-8B-Instruct). Then, by dynamically selecting high-value, diverse data batches
based on these surrogate-derived scores, RAISE outputs the optimal subset. RAISE achieved superior
performance while using only 1% of the gradient update steps compared to full-dataset training.

Furthermore, Yang et al. [113] proposed SMALLTOLARGE (S2L), a scalable and effective data
selection method for domain-specific supervised fine-tuning. S2L works by first training a small
proxy model on the dataset, collecting the training loss trajectories for each sample, and then
clustering these trajectories to group examples that exhibit similar training dynamics. By sampling
from these clusters, S2L creates a small, representative subset to fine-tune a much larger target
model. Motivated by the finding that weak and strong models consistently perceive instruction
difficulty, Li et al. [52] proposed superfiltering. Superfiltering first filters data using IFD scores
calculated by a small proxy model (e.g., GPT-2), and subsequently employs a facility location
function to select a diverse subset from these high-quality candidates. Similarly, Lin et al. [61]
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proposed DEALRec to identify influential samples for the efficient few-shot fine-tuning. DEALRec
computes an influence score using a lightweight surrogate model, where the score is efficiently
approximated via stochastic Hessian-Vector Products to estimate the change in empirical risk
caused by removing a sample. To mitigate the capability gap between the surrogate and the LLM,
DEALRec incorporates an effort score calculated as the gradient norm of the sample loss, and
utilizes a stratified sampling strategy to explicitly address data diversity and coverage.

Training Dynamics and Influence & Intrinsic Data Quality. Gao et al. [30] proposed HINT,
a novel framework consisting of two main components: hybrid pseudo-labeled data selection and
noise-tolerant Training. The hybrid selection module filters low-quality data by combining training
loss metrics with a retrieval-based method that checks for label similarity against known data. The
noise-tolerant training module further mitigates the impact of remaining errors by employing a
symmetric cross-entropy loss function and a consistency regularization objective.

Training Dynamics and Influence & Heuristics. Guo et al. [34] introduced preference-
oriented data Selection (ProDS). ProDS utilizes a surrogate model warmed up via supervised
fine-tuning and direct preference optimization to compute gradients that quantify the alignment of
training samples with bidirectional preferences (positive and negative). These preferences identify
data samples that actively improve response quality rather than just mimicking features. By
employing an annealing algorithm to synthesize these surrogate-derived preference scores, ProDS
selects subsets that allow models to outperform those trained on full datasets. After that, Feng et
al. [28] introduced a Whitened Feature Distance (WFD) metric, which applies Cholesky whitening
and normalization to gradient features to mitigate dominant feature bias and follows a similar
schedule for data selection.

Recently, Fu et al. [29] proposed T-SHIRT, which utilizes the target LLM as a surrogate evaluator
to compute a difficulty score. T-SHIRT isolates and assesses only the informative tokens (those
with high loss) to accurately measure data quality while ignoring noise. Furthermore, it employs a
hierarchical selection strategy that prioritizes samples whose local neighbors exhibit both high
average S-difficulty scores and low variance, thereby ensuring selected data is both high-quality
and robust. Extensive experiments showed that T-SHIRT can achieve superior performance by
using only 5% of the data.

Uncertainty & Data Diversity. Yu et al. [119] introduced PATRON, which employs the frozen
pre-trained language model equipped with cloze-style prompts as a zero-shot surrogate model. This
surrogate generates task-aware pseudo-labels and uncertainty estimates for unlabeled data, which
are then refined through a kernel-based uncertainty propagation method using SimCSE embeddings
to filter out noise and bias. To ensure diversity in the selected batch, PATRON utilizes a partition-
then-rewrite strategy that iteratively optimizes sample selection within clustered embedding spaces.

At the same time, He et al. [64] proposed DEITA, a framework designed to identify important
instruction tuning data by measuring samples across three dimensions: complexity, quality, and
diversity. To achieve this, DEITA integrates an evolution-based method to train specific scorers
that predict complexity and quality based on ChatGPT rankings, subsequently employing a score-
first, diversity-aware selection strategy that prioritizes high-scoring samples while filtering out
semantically redundant examples using embedding distance.

Uncertainty & Intrinsic Data Quality. Si et al. [94] introduced NOVA, a novel data filtering
framework combining familiarity and quality. Here, familiarity is quantified via two key metrics:
internal consistency probing and semantic equivalence identification. And the data quality score is
derived from an expert-aligned reward model. Using an averaged rank, NOVA selects the final data
subset for supervised fine-tuning. Extensive experiments demonstrated that NOVA significantly
reduced both factuality and faithfulness hallucinations across multiple benchmarks.
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Uncertainty & Heuristics. To address the critical problem of knowledge conflicts in domain-
specific instruction-tuning, Zhong et al. [135] proposed a knowledge-aware data selection (KDS).
KDS identifies that existing data selection methods, which are often data-centric (focusing on quality
or diversity), fail in specialized domains since their selections contradict the LLM’s pretrained
knowledge. KDS quantifies these conflicts by first generating multiple responses from the LLM
for each data sample and then applying two novel metrics: knowledge alignment, which uses an
NLI model to measure the alignment between the LLM’s responses and the reference answer, and
knowledge consistency, a reference-free metric that measures the semantic uncertainty among the
multiple generated responses.

Data Diversity & Intrinsic Data Quality. Researchers prefer to consider both data diversity and
quality when designing their data selection methods. Ge et al. [31] proposed clustering and ranking
(CaR), a two-step data selection method. CaR first ranks instruction pairs using a compact instruction
pair quality scoring model that is aligned with human-expert preferences. Second, it employs k-
Means clustering to preserve dataset diversity. Bukharin et al. [10] designed quality-diversity
instruction tuning (QDIT), an algorithm for automatically selecting small, effective instruction
tuning datasets. QDIT quantifies diversity using the facility location function based on instruction
embeddings and combines this score linearly with an external quality score derived from a pre-
trained reward model or a high-capacity LLM, using a greedy algorithm to select the subset that
maximizes this combined objective.

Specifically focusing on mathematical reasoning tasks, Ni et al. [78] introduced the quality-aware
diverse selection (QaDS) strategy. QaDS integrates a K-center Greedy approach to ensure data
diversity. For data quality, it estimates the quality from the positive influence samples exert on
each other during a “one-shot inference” process. This work addresses the lack of validated data
selection methods and the unclear understanding of optimal data composition for mathematical
reasoning. Zhang et al. [123] proposed Quad. Quad first uses an embedding model to generate vector
representations for the input data, clusters the dataset, and then employs a Multi-Armed Bandit
framework, treating each cluster as an arm to iteratively balance selecting high-quality clusters
with selecting less-visited clusters. To measure quality, it introduces a novel influence function
that incorporates attention layers for richer semantic detail and uses the Kronecker product to
accelerate the computationally expensive Hessian matrix calculation. At the same time, Pang et
al. [83] proposed DS? (Diversity-aware Score curation method for Data Selection), a novel pipeline
designed to address the inaccuracies and biases inherent in using LLMs as cost-effective data raters
for instruction tuning. DS? models these error patterns by estimating a score transition matrix,
which is derived without ground-truth labels by leveraging k-NN statistical information. DS? then
uses this matrix to correct the initial LLM scores and selects data by first prioritizing these curated
quality scores, and secondarily ranking by a long-tail diversity score to ensure sample variety.

Cai et al. [11] introduced InfiAlign. The core idea of InfiAlign is an automated data selection
pipeline that selects alignment data by evaluating open-source corpora along multidimensional
metrics, including diversity (semantic and domain-level), difficulty (using response length as a
proxy), and quality (verified by LLMs and rule-based verifiers). This pipeline is followed by a
curriculum-guided self-supervised fine-tuning stage and a preference-based DPO stage. Chen et
al. [15] proposed MIG, an automatic data selection method for instruction tuning that iteratively
samples data to maximize information gain in a semantic label graph. The graph models labels
as nodes and their semantic relationships as edges. Data quality is integrated via quality scores
by a surrogate quality scorer, while diversity is quantified through information distribution and
propagation across the graph. Leveraging the submodularity of the information metric, MIG
employs a greedy algorithm to efficiently balance quality and diversity. Similarly, Mirza et al. [75]
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proposed Combination++, which quantifies the quality by the response of a task-specific model,
and quantifies the diversity by clustering.

Liang et al. [58] proposed Synth-Empathy. The core of it is a novel quality selection step that
uses a discriminator model, fine-tuned on the high-quality empatheticdialogues (ED) dataset, to
filter the synthetic data based on embedding similarity, followed by a diversity selection step using
the K-Center Greedy algorithm. He et al. [37] proposed TACOS. It leverages an LLM to assign
open-domain tags to instructions, which are then normalized and clustered to capture diversity.
Subsequently, TACOS uses an LLM to perform pairwise comparisons of data samples within each
cluster, establishing consistent relative quality criteria instead of isolated scoring.

Different from previous works, Wu et al. [104] formulated data selection for supervised fine-
tuning as a set cover problem and introduced GraphFilter, a method that balances data quality
and diversity. The method utilizes a surrogate quality scorer to assign an informativeness score to
each sentence, which is then multiplicatively combined with term frequency-inverse document
frequency (TF-IDF) to create a unified priority function. The algorithm iteratively selects the
sentence with the highest priority, removes its n-grams from the graph, and updates priorities.
Lu et al. [67] proposed INSTAG, an automatic open-set fine-grained tagging framework that uses
ChatGPT to assign semantic and intentional tags to queries in SFT datasets, which are then processed
through a systematic normalization procedure. Using the resulting 6.6K tags, the method defines
diversity as the tag coverage rate and complexity as the average number of tags per query.

Song et al. [95] propose IterSelectTune, an iterative training framework designed to address the
problem of efficiently selecting high-quality instruction data for LLM finetuning, which typically
requires extensive use of models like GPT-4. IterSelectTune first applies K-means clustering to
the source set to derive a Diverse Subset, uses a small BERT-based classifier to automatically
identify hard instructions—those where the base LLM’s response quality is inferior to the original.
This classifier is iteratively trained to mimic GPT-4’s judgments on small, diverse data batches,
minimizing cost and human involvement. By finetuning a LLaMA2-7B model on just 20% of the
source data selected by this method, the resulting model consistently outperformed the model
trained on the full dataset across multiple benchmarks, including MT-Bench and AlpacaEval 2.0.

Data Diversity & Heuristics. Zhang et al. [122] proposed EQUAL, employing an embedding
model fine-tuned via contrastive learning as a surrogate to align document features with QA pair
features to enable the calculation of an optimal transport (OT) score. This OT score efficiently
estimates the distributional similarity between document clusters and a reference set to guide a
multi-armed bandit selection strategy. By leveraging this surrogate-enhanced scoring to prioritize
high-value clusters, EQUAL reduces computational costs by 5-10 times. After that, PASER has been
proposed by He et al. [35]. PASER designs a capability degradation score, which is calculated using
Jensen-Shannon divergence (JSD) between the original and pruned models’ output distributions, as
a surrogate metric to quantify capability loss. In this way, PASER allows adaptive allocation of data
budgets to the most severely affected clusters identified via semantic-structural clustering.

He et al. [38] proposed SHED. Similar to previous works, SHED first uses model-agnostic clus-
tering to group the data and select representative samples, and then uses a proxy-based Shapley
calculator to assign a quality score to each cluster based on that proxy’s contribution. Finally,
optimization-aware sampling builds the curated dataset from these clusters. Liu et al. [65] in-
troduced task-specific data selection (TSDS), which uses the feature space of surrogate model
encodings to compute a distribution alignment loss. In this way, TSDS quantifies and minimizes
the discrepancy between the selected subset and the target distribution. To further enhance sample
quality, the method introduces a novel regularizer utilizing kernel density estimation that explicitly
encourages diversity and mitigates the adverse effects of near-duplicates.
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Intrinsic Data Quality & Heuristics. Li et al. [57] proposed style consistency-aware response
ranking (SCAR). SCAR ranks data based on two perspectives: linguistic form (lexical and syntactic
choices) and instructional surprise (the predictability of a response given an instruction). Specifically,
SCAR trains a ranking model to automatically prioritize instruction-response pairs based on these
two types of information. Specifically targeting long chain-of-thoughts instruction tuning, Yang et
al. [109] proposed SELECT2REASON. Based on the insight that high-utility data exhibits more
rethinking behaviors like self-correction, it employs a joint ranker that combines question difficulty
that quantified using an LLM-as-a-Judge, and the length of the reasoning trace.

Training Dynamics and Influence & Data Diversity & Intrinsic Data Quality. Do et al. [23]
designed SPaRFT, a self-paced framework that adaptively optimizes training data selection. The
method employs a surrogate difficulty estimator to calculate an initial difficulty score for each
training example based on its empirical solve rate. Then, these scores are concatenated with semantic
embeddings to form clusters for data reduction. By utilizing these surrogate-derived difficulty scores
to cluster data and subsequently using a multi-armed bandit algorithm to sample from these clusters
based on real-time model performance dynamically, SPaRFT achieves state-of-the-art reasoning
accuracy while using up to 100X fewer training samples than standard methods.

Training Dynamics and Influence & Data Diversity & Heuristics. Zhang et al. [129]
introduced STAFF, considering three types of features for data selection. STAFF begins by calculating
a speculative score, derived from the gradient norm of a small model in the same family, to estimate
the difficulty of learning each sample. To ensure accuracy, STAFF partitions data into regions and
computes a verification result, defined as the ratio of the target model’s score to the speculative
score for a sampled subset. Finally, a selection budget is dynamically allocated to each region,
ensuring that critical data is prioritized while maintaining diversity through stratified sampling.
Empirical results showed that STAFF reduces selection time by up to 70.5%.

Uncertainty & Data Diversity & Intrinsic Data Quality. Several works considered combining
uncertainty, diversity, and data quality for data selection. CROWDSELECT is the representative
one proposed by Li et al. [56]. It leverages multi-LLM wisdom to analyze responses from multiple
LLMs and their reward scores. It proposes difficulty, separability, and stability metrics derived
from this multi-LLM perspective to capture more comprehensive characteristics of instruction.
CROWDSELECT addresses the limitation that single-signal methods fail to capture the complexity
of instruction-following across diverse fields and may overlook valuable nuances. Bai et al. [6]
proposed a pre-trained language model-based active learning approach specifically for sentence
matching. It addresses the problem that previous active learning methods for NLP primarily rely
on entropy-based uncertainty criteria and ignore language characteristics. The proposed method
enhances standard uncertainty sampling by introducing three new linguistic criteria derived from
a PLM: noise, coverage, and diversity.

More recently, Zhang et al. [127] proposed D3, a data selection framework for sample-efficient
LLM instruction tuning. D3 involves a scoring step that defines sample distinctiveness (diversity),
introduces a novel uncertainty-based prediction difficulty score to measure sample challenge while
mitigating context-oriented generation diversity. Moreover, it employs a teacher LLM to assess
sample sufficiency and reliability. Subsequently, a selection step formulates a D3 weighted Core-Set
objective to jointly optimize these three data value aspects and identify the most valuable subset,
allowing for iterative refinement using model feedback. D3 addresses the problem that existing
selection methods often rely on single metrics or heuristic staging, failing to comprehensively
assess data value or balance criteria effectively for identifying potent subsets from large, potentially
low-quality or redundant datasets.

Data Diversity & Intrinsic Data Quality & Heuristics. Finally, Du et al. [24] proposed a
model-oriented data selection (MoDS) approach for instruction tuning. MoDS iteratively selects
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data based on three criteria: quality (using a quality evaluation model), coverage (using a K-Center
Greedy algorithm for diversity), and necessity (identifying data where an initial fine-tuned model
performs poorly). Experimental results show that a model fine-tuned with only 0.2% instruction
pairs selected by MoDS performed better than a model fine-tuned on the full original dataset.

5.2.1.6 Surrogate Model Analysis

Table 6 summarizes the distribution of the surrogate model used for data-efficient LLM fine-
tuning. Different from the pre-training phase, representation-based models are more frequently
used as surrogates. In detail, for representation-based surrogate models, the BERT family is the
most popular one. The LLaMA family is most used as scoring and selection surrogate models.

5.2.2 Surrogate-Free Methods

Table 6. Usage of Surrogate Models
5.22.1 Training dynamics and influence & &

Dai et al. [18] proposed balanced and influential data
selection (BIDS). BIDS employs an iterative selection al-

Surrogate Model Component #Works

. .. . Representation Model 37
gorithm to choose training examples that provide the Scoring Model 2
strongest influence on the most underrepresented task Selection Model 23

currently in the selected subset. Here, influence is quan-

tified via the cosine similarity of gradient projections

derived from training and validation examples, followed by column-wise normalization to cali-
brate influence scales across tasks. The authors demonstrated that a 15% subset selected by BIDS
outperforms full-dataset training. Zhao et al. [133] introduced gradient-based graph instruction
selection (G2IS), a novel method that utilizes principal component analysis (PCA) on validation set
gradients to identify core knowledge representations and employs a gradient walk algorithm to
select data points. Evaluation showed that G2IS can reduce 99% training cost while keeping model
performance.

Some other works also use gradients as guidance for the data selection. For example, Zhao et
al. [131] proposed collaborative learning under exemplar scoring (CLUES) to compute the trace
of accumulated gradient inner products as a measure of influence on training dynamics. Wang et
al. [102]proposed a two-stage method, ClusterUCB. ClusterUCB first groups the training data
pool into clusters based on the intuition that samples with similar gradients will have similar
training influences, and then frames the inter-cluster selection as a multi-armed bandit problem,
using a modified upper confidence bound algorithm with a cold start to allocate a constrained
computing budget. The authors showed that ClusterUCB can reduce 80% of training budgets. Deng et
al. [21] introduced gradient trajectory pursuit (GTP), which formulates the selection as an L0-norm
regularized objective, efficiently finding a data subset whose gradient trajectory matches a target
trajectory within a compressed subspace. Surprisingly, experimental results showcase that using
0.5% of the data can reach the full-dataset performance based on GTP.

Moreover, Kang et al. [46] argue that existing data selection methods, which simply match the
target distribution, are suboptimal for models that have already been pre-trained. They proposed a
gradient-based method, gradients of optimal transport for data selection (GOT-D), which identifies
unlabeled data for an initial pre-fine-tuning stage. The key idea is to use the gradients of the optimal
transport distance to select samples that most effectively nudge the pre-training distribution closer
to the target distribution. Yang et al. [111] proposed refined contribution measurement with in-
context learning, a technique that quantifies the fine-grained contribution of individual samples
by measuring the reduction in perplexity they induce on a diverse assessment set when used as
in-context demonstrations. To ensure scalability, a lightweight selection module is trained on these
computed scores, enabling the curation of large datasets with strictly linear inference complexity.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: January 2026.



111:20 Xinyang Liu, Qiang Hu et al.

Loss is a commonly used indicator for data selection. Nikdan et al. [79] proposed to assign
weights to training samples based on their second-order influence on a target distribution’s loss.
The method calculates model-specific weights for both gradient descent and Adam optimizers, and
uses a landmark-based approximation with novel Jacobian-vector product embeddings to efficiently
scale the influence computation.

More recently, Zhang et al. [124] proposed GRAPE, a supervised fine-tuning framework grounded
in the hypothesis that data closely aligned with a pre-trained base model distribution yields superior
performance compared to generic high-quality synthetic data. GRAPE gathers multiple candidate
responses for a set of instructions and selects the specific response that maximizes the conditional
probability under the target model itself, thereby ensuring the training data fits the model’s intrinsic
knowledge distribution without requiring external reward models or gradient computations.

Most works designed different techniques with promising results, but lacked theoretical guar-
antees. To address this, Zhou et al. [138] proposed HYPERINF, a novel method that combines the
strong convergence guarantees of Schulz’s iterative algorithm with a generalized Fisher Information
Matrix as a low-rank Hessian approximation. HYPERINF reduces computational and memory costs
on LoRA-tuned models to be constant and independent of the rank. After that, Yang et al. [112]
introduced CRest, a scalable framework with rigorous theoretical guarantees. CRest addresses
the challenges of training non-convex models by dynamically modeling the loss landscape as a
series of quadratic functions and extracting core-sets for each quadratic sub-region to approximate
the full gradient. To ensure convergence for stochastic gradient methods like SGD, it iteratively
selects multiple mini-batch core-sets from larger random subsets of data, yielding nearly-unbiased
gradients with small variance. Additionally, CRest excludes learned examples from the selection
pipeline to further enhance efficiency.

Li et al. [53] introduced the IFD metric, calculated using the self-model briefly trained on a small
data subset. This model then quantifies the difficulty of an instruction by comparing the model’s
response generation loss with and without the instruction’s context. Experiments demonstrated
that selecting only a small fraction (5-10%) of data with high IFD scores leads to models that match
or outperform those trained on the full datasets.

5.2.2.2 Uncertainty

Osband et al. [80] proposed employing an epinet, a small additional network, to form an epis-
temic neural network (ENN) capable of estimating its own uncertainty, specifically distinguishing
epistemic from aleatoric uncertainty. Then the data selection is based on the predicted uncertainty
score. Zhang et al. [128] proposed constraint LoRA with dynamic active learning (STAR) to utilize
the uncertainty score for data selection. STAR introduces a dynamic uncertainty measurement
that linearly interpolates between the uncertainty of the frozen base model and the fine-tuned
model over time, while simultaneously employing a hybrid regularization strategy consisting of
Monte-Carlo dropout and L2 norm weight decay to prevent model over-confidence. Zhao et al. [134]
proposed UFO-RL, a framework that uses a novel uncertainty estimation technique (average Log-
Softmax) to efficiently identify and select data instances of intermediate difficulty where the model
exhibits high learning potential. Moreover, Wang et al. [101] analyzed chain-of-thought (CoT)
reasoning through the lens of token entropy, discovering that a small part of tokens exhibit high
entropy, which act as critical decision points that steer the reasoning path. Based on the finding,
the authors proposed a framework that restricts policy gradient updates exclusively to the top 20%
high-entropy tokens, achieving the token-selection purpose.

5.2.2.3 Data Diversity
Shi et al. [92] proposed a unified framework combining diversity-aware self-Signal dilution
(DASD) and convergent adaptive weighted sampling (CAWS). The DASD method calibrated the
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model by clustering reasoning paths and quantifying diversity as the sum of semantically distinct
members to dilute the confidence scores of redundant answers for robust training targets. This
calibrated foundation enables CAWS, an adaptive inference algorithm that aggregates confidence-
weighted votes to halt generation once a candidate achieves dominance and stability over a
sliding window, to dynamically terminate inference. Consequently, the approach achieves over
70% reduction in inference costs while maintaining high accuracy, such as reaching 92.6% on
GSMB8K with fewer than 16 samples on average compared to the standard baseline of 64. Agarwal et
al. [2] proposed data-efficient language model instruction fine-tuning (DELIFT). Inspired by in-
context learning that quantifies the informational gain of a sample by measuring its effectiveness
in improving model predictions for other samples when used as a prompt. DELIFT selects diverse
and non-redundant subsets tailored to the specific fine-tuning stage using submodular functions.

5.2.2.4 Intrinsic Data Quality

Wang et al. [100] proposes Data Whisperer, an efficient, training-free data selection method for
task-specific LLM fine-tuning. Data Whisperer leverages the model’s own predictive capabilities to
score the utility of each training sample with few-shot in-context learning. To mitigate ICL’s order
sensitivity, it introduces a context-aware weighting mechanism that refines these utility scores
based on their attention scores. Data Whisperer can lead the model to achieve superior performance
on the full dataset using just 10% of the data.

5.22.5 Composite and Multi-Objective Strategies

Similar to the surrogate-based methods, several surrogate-free techniques integrate multiple
selection criteria for the data selection to guarantee more data properties.

Heuristics. Tu et al. [97] introduced ResoFilter, a novel filtering approach that shifts focus
from simple data selection to quality refinement by analyzing the interaction between data and
model parameters during fine-tuning. The selection process utilizes a characteristic intensity metric,
which is calculated by performing a one-shot fine-tuning for each data sample and measuring the
resulting weight shifts in the feed-forward networks of the model’s deeper layers. Samples with
lower weight differences are prioritized as they represent high-consistency data that aligns better
with the model’s pre-existing knowledge. Empirical evaluations showed that ResoFilter achieved
performance comparable to full-dataset training on mathematical reasoning tasks using only 50%
of the available data.

Training Dynamics and Influence & Heuristics. Wang et al. [99] proposed a framework
that evaluates data by generating adversarial instruction samples through character, word, and
sentence-level attacks. The authors introduced the adversarial instruction-following difficulty (AIFD)
score to measure the difficulty of aligning responses to adversarial inputs, and the adversarial
instruction output embedding consistency (AIOEC) metric to assess embedding stability when model
responses are unreliable. Mei et al. [74] proposed a group-level optimal transport-guided coreset
selection (GORACS). A proxy optimization objective that leverages optimal transport distance and
gradient norms to efficiently bound the generalization gap without full model evaluation has been
introduced. This objective is optimized via a two-stage initialization-then-refinement algorithm
(ITRA) that first selects a greedy initial subset and then refines it through iterative sample exchanges
guided by efficient marginal improvement estimation. Evaluation demonstrated that GORACS can
reduce fine-tuning time cost by approximately 80%.

Training Dynamics and Influence & Data Diversity. Jia et al. [44] designed ITERIT, an
iterative data selection framework for instruction tuning. The method employs a complexity score,
which measures IFD via perplexity ratios and is updated per training epoch, alongside a diversity
score that utilizes TF-IDF on response n-grams. Specifically, the TF-IDF calculation determines
the importance of n-grams by balancing their frequency within a single response against their
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rarity across the selected dataset, dynamically down-weighting features that have already been
covered to ensure a diverse selection. By iteratively updating these scores and greedily selecting a
subset that maximizes the combined metric, the approach facilitates a collaborative loop where the
model guides data selection. For the same purpose, Pan et al. [81] proposed G-DIG. It first utilizes
an influence function that quantifies the gradient-based similarity between training samples and
the seed dataset to select training examples that have a positive influence on the model. It then
enhances diversity by clustering the gradients of these selected examples and resampling uniformly
from the clusters to maximize the variety of influences on the model.

Considering both gradients and diversity, Zhang et al. [126] proposed task-agnostic gradient
clustered coreset selection (TAGCOS). TAGCOS uses sample gradients as data representations,
applies K-means clustering to these gradients to manage data diversity, and then uses an optimal
matching pursuit (OMP) algorithm within each cluster to select a subset that best approximates
the gradient of the entire cluster. Evaluation demonstrated that selecting only 5% of the data via
TAGCOS achieved performance close to that of training on the full dataset.

Uncertainty & Data Diversity. Arabelly et al. [5] introduced weighted task diversity, a label-
efficient sampling strategy that leverages existing task categorizations and model uncertainty to
optimize data selection for instruction tuning. The selection process allocates a minimum budget to
every task to ensure broad coverage, while distributing the remaining budget based on the inverse
of the base model’s confidence. Here, confidence is measured as the average product of token-level
probabilities. Finally, it prioritizes tasks where the pre-trained model exhibits higher uncertainty.

Uncertainty & Heuristics. Yang et al. [115] introduced P3, an adaptive framework for LLM
fine-tuning that dynamically optimizes data usage by tailoring training content to the model’s
evolving competence. To achieve this, the authors introduced a policy-driven difficulty metric that
evaluates sample complexity based on the model’s real-time generation probabilities, which drives
a self-paced learning mechanism to progressively expose the model to more challenging data. This
selection process is further refined using a determinantal point process to ensure high diversity
within the chosen subsets, thereby enhancing generalization.

Training Dynamics and Influence & Uncertainty & Intrinsic Data Quality & Heuristics.
Ding et al. [22] proposed decomposed difficulty-based data selection (3DS), a model-centric data
selection framework designed to align data selection with the target model’s internal knowledge
distribution. 3DS consists of two stages: first, a prompt-driven selection filters data based on
the model’s own quality assessment, followed by a difficulty-based selection using three metrics:
instruction understanding difficulty, which measures the model’s comprehension of the input
instruction; response confidence difficulty, which gauges the uncertainty of the model’s generated
response; and response correctness difficulty, which evaluates the difficulty of producing the ground
truth answer. These metrics are calibrated by an attention-based importance weighting mechanism
to focus on semantically significant tokens. Results showed that selecting just 5,000 samples from a
pool of 1.9 million achieves an average accuracy improvement of 2.97% over baselines.

5.2.3 Benchmark or Empirical Study

Among our reviewed works in the fine-tuning phase, in addition to those proposed novel
techniques for data selection, 9 works built benchmarks or conducted comprehensive studies to
analyze existing methods and support future research in this domain.

Some works focus on the scenario of active learning for language models, where active learning is
a long-term studied problem in the machine learning community. Hu et al. [40] established the first
benchmark for active code learning to evaluate sample-efficient training strategies systematically.
The key findings reveal that, first, for clustering-based methods, model output vectors are surpris-
ingly the most effective features for data selection, outperforming code tokens and embeddings in
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62.5% of cases. Second, while active learning proves highly effective for classification tasks, it is
notably ineffective for the non-classification task of code summarization, resulting in a performance
gap of over 29.64%. Jacobs et al. [42] presented a comprehensive empirical study evaluating the
effectiveness of uncertainty-based active learning (AL) strategies. The study compares three primary
query functions: Variation Ratio, Predictive Entropy, and Bayesian Active Learning by Disagreement
(BALD). Furthermore, it investigates the impact of query-pool size and introduces three heuristics
(RET, RECS, and SUD) designed to mitigate the known issues of redundancy and outlier selection
in AL. The paper concludes that while standard uncertainty-based AL is an effective strategy
for sample-efficient fine-tuning of BERT, its performance gains are more modest compared to its
application on older NLP models or in computer vision.

Yin et al. [116] investigated data selection for LLM fine-tuning under strict compute constraints.
It formalizes this practical challenge as a cost-aware optimization problem, modeling the trade-
off between the initial compute spent on selecting data and the subsequent training efficiency
gains. The core problem addressed is that while sophisticated data selection methods can improve
performance per training step, their own computational cost might make them suboptimal when
total compute is limited. The study finds that computationally expensive techniques like perplexity-
based and gradient-based selection are often not compute-optimal. Interestingly, Ivison et al. [41]
utilized a systematic study to reveal that many existing methods fail to improve or even degrade in
performance when applied to large-scale data pools of up to 5.8 million samples.

Xia et al. [107] re-evaluated self-scoring data selection methods for supervised fine-tuning at a
large scale. It found that, based on replicating methods on two million-scale datasets (Openhermes2.5
and WildChat-1M), nearly all existing self-scoring methods fail to significantly outperform simple
random selection. The analysis concludes that data diversity is more critical than data quality
for SFT at scale. Finally, the study proposes that filtering data by token length offers a stable
and efficient method that yields superior results. Similarly, Shen et al. [91] highlighted that, due
to the superficial nature of SFT, the key is to select demonstrations that best reflect human-like
interactions. It introduces a simple yet effective heuristic of selecting instances with the longest
responses, hypothesizing that detailed responses are more helpful.

Moreover, Liu et al. [66] addressed the absence of a unified framework and the difficulty of
systematically comparing diverse experimental settings in the field of data selection for fine-tuning
LLMs. They proposed a three-stage taxonomy covering feature extraction, criteria design, and
selector evaluation, augmented by a unified methodology that assesses efficiency and feasibility
through ratio and ranking metrics. The study demonstrated that methods employing targeted
quality measurements, such as IFD, yield higher efficiency in model performance improvement but
often at the expense of practical feasibility compared to simpler approaches.

From a security perspective, He et al. [36] investigated the phenomenon of safety degradation
during benign fine-tuning to identify benign data that shares optimization characteristics with
harmful content. The study reveals a critical security flaw whereby fine-tuning safety-aligned LLMs
on seemingly harmless datasets, such as lists or mathematical problems, can unintentionally weaken
built-in guardrails and enable jailbreaking. Experimental results demonstrate that fine-tuning on a
subset of just 100 selected benign data points significantly increases the Attack Success Rate (ASR)
to over 70%, compared to less than 20% when using randomly selected data.

Unlike other works that focus on benchmarking selection algorithms or analyzing scale, Jha et
al. [43] investigated the impact of dataset composition across conflicting evaluation paradigms. They
proposed a data composition strategy to resolve the tension between traditional perplexity-based
benchmarks and model-based evaluations. Observing that different datasets optimize for different
evaluation metrics, such as style and factual knowledge, the authors fine-tune MPT models by
combining the high-quality LIMA dataset with random subsets from larger instruction corpora.
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The study finds that a mixture of approximately 2,000 to 6,000 samples is sufficient to achieve
performance parity with full datasets of over 50,000 examples on traditional benchmarks.

5.2.4 Data and Model Analysis

=

(a) Distribution of top-10 datasets utilized in the sur-  (b) Distribution of top-10 models utilized in the sur-
veyed papers. veyed papers.

Fig. 3. Statistical overview of datasets and models in the collected papers.

Figure 3a depicts the top-10 frequently used datasets in these 98 fine-tuning data selection works.
We can see that the Instruction Tuning task is the most commonly studied, where Dolly, Alpaca,
and WizardLM appeared 26, 24, and 21 times, respectively. There is also a notable emphasis on
reasoning and logic capabilities, evidenced by the frequent inclusion of GSMS8K (15), MMLU (12),
and Chain-of-Thought (CoT) (12) datasets. This distribution suggests that while basic instruction
alignment remains the primary testbed, researchers are increasingly validating their methods
against complex mathematical and multi-step reasoning tasks. Figure 3 shows the top-10 frequently
used models. It is clear that the LLaMA family is the most widely used base model. The potential
reason is that LLaMA is one of the earliest open-source LLMs, establishing it as the de facto standard
for fine-tuning research. Beyond this dominant family, the Mistral model (32) and the Qwen series
(specifically Qwen2.5 with 25 citations) have established themselves as significant contenders.

6 Discussion
6.1 Pre-training vs. Fine-tuning

Research focus. Among our surveyed 116 works, only 18 papers (15.5%) focus on data selection in
the pre-training stage, while the remaining ones target the fine-tuning stage. This disparity indicates
that researchers prioritize data selection for instruction tuning and alignment over foundational
pre-training. The potential reasons are: 1) Difficulty. The pre-training process needs to consider
multiple tasks, e.g., QA, programming, and other reasoning tasks. This multi-objective purpose
significantly increases the challenge of designing new data selection methods. 2) Computational
cost. Compared to the fine-tuning datasets, pre-training datasets are much larger in scale, requiring
more computation costs. However, the majority of research originates from academia, which lacks
enough computational resources. Interestingly, 11 (61.1%) of 18 pre-training works were authored in
collaboration with major technology companies or large-scale research institutes. This phenomenon
supports the hypothesis that the pre-training stage remains a high-resource domain.
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Technique focus. In the pre-training phase, Table 7. Statistics of different data selection studies.
most of the works (17 out of 18) utilize exter-

nal models or proxy metrics to estimate data Surrogate Type Selection Criteria Categorization #Works
1. . . . T ing D i d Infl 12
utility. This imbalance stems from the massive Uncertanty 4
.. . Surrogate-Free  Data Diversity 3
scale of pre-training corpora. Specifically, the Intrinsic Data Quality |
. . N Composite and Multi-Objective Strategies 9
computational overhead of using the model-in- Traiming Dymamics and Inlaenee ”
training to evaluate its own data is typically SurtogateBased  ots Diveraity :
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high. Surrogate-based techniques mitigate this Compasite smdalt Objectve Ssategios 12

by employing efficient, often static, proxies like

n-gram overlaps or smaller, frozen language models to filter noise and redundancy. In contrast,
the fine-tuning phase exhibits a much higher adoption of surrogate-free methods (28 works). We
attribute this trend to the reduced scale and increased specialization of fine-tuning datasets, which
typically range from 50,000 to 5 million samples. At this scale, assessing data utility directly with the
model-in-training becomes computationally friendly. By using the target model to determine which
samples are most informative for instruction-following or alignment, researchers avoid the biases
in external scoring models. However, the fine-tuning phase employs surrogate-free techniques
much more frequently than the pre-training phase. This trend reflects a technical focus on precision
and direct task alignment.

Dataset. Datasets used in pre-training (as shown in Table 3) typically possess massive scale
and diversity, primarily consisting of high-volume text corpora and general-purpose Q&A pairs.
Researchers frequently use datasets such as C4, The Pile, RedPajama, and The Stack, which provide
the multi-terabyte scale necessary for models to learn statistical regularities. More importantly, they
cover various domains, including web content, scientific literature, and source code. In this stage,
data selection emphasizes knowledge density and broad coverage. In contrast, the 98 fine-tuning
papers focus heavily on specialized instruction-following datasets (Fig. 3a). The top three datasets,
Dolly (26), Alpaca (24), and WizardLM (21), account for a substantial portion of the research focus.
Unlike pre-training corpora, these datasets are relatively small in scale. They consist of (instruction,
response) pairs designed to align the model’s output with human intent. Furthermore, reasoning-
heavy datasets like GSM8K and MMLU are prevalent in the fine-tuning phase. This indicates a
strategic shift toward enhancing logical deduction and problem-solving capabilities after the initial
knowledge acquisition phase.

Model. In pre-training data selection research, models span various architectural generations,
from encoder-only models (e.g., BERT-base, BioBERT) to decoder-only scaling benchmarks (e.g.,
GPT-2, Pythia, LLaMA-1). This diversity indicates that pre-training research often investigates the
fundamental properties of different architectures. It also examines the impact of varied pre-training
objectives. In contrast, model usage in fine-tuning data selection is more concentrated. Researchers
show a strong preference for state-of-the-art open-weight models. For example, LLaMA-2 (42) and
Mistral (32) are the most frequently used.

6.2 Surrogate-based vs. Surrogate-free

Baseline consideration. We found that around 90% of analyzed surrogate-based methods include
surrogate-free baselines in their evaluations. Surrogate-based methods introduce the additional
computational cost of training or using an auxiliary model. Therefore, they must demonstrate
performance gains that justify this overhead against computationally cheaper alternatives. However,
some (65%) of the surrogate-based methods consider Random selection as the surrogate-free baseline,
which is insufficient for the evaluation. Conversely, around 69% of surrogate-free methods compare
against surrogate-based baselines. However, the selection of these baselines is highly specific.
Rather than comparing to a broad range of surrogates, surrogate-free methods frequently target

J. ACM, Vol. 37, No. 4, Article 111. Publication date: January 2026.



111:26 Xinyang Liu, Qiang Hu et al.

baselines, AlpaGasus, and DEITA. The goal is to demonstrate that intrinsic signals (e.g., loss) can
achieve selection quality comparable to surrogate pipelines without the associated resource costs.

Selection criteria focus. Table 7 summarizes the distribution of selection criteria used by
each paradigm. First, we observe a significant difference in the use of Intrinsic Data Quality
metrics. Surrogate-based methods frequently use this metric (13 works), but not for surrogate-
free methods (1 work). This trend aligns with the definition of intrinsic quality, which evaluates
properties such as fluency, coherence, and correctness. Assessing these characteristics typically
requires a powerful auxiliary model. This model must score textual quality independently of the
current state of the target model. Moreover, surrogate-based methods (17%) rely less on Training
Dynamics and Influence compared to surrogate-free methods (41%). The potential reason is that
Training dynamics derive directly from the model’s interaction with data during training, using
indicators such as sample loss or gradient norms. However, surrogate-based methods often use
proxy models to estimate data impact. The loss and gradient norms from surrogates cannot precisely
reflect the training behavior of the target model. As a result, Training Dynamics and Influence are
less used in a surrogate-based situation.

Furthermore, Composite and Multi-objective
Strategies are markedly more prevalent in surrogate- 14
based methods (42 works) than in their surrogate-
free counterparts (9 works). This indicates that using 10
a surrogate model facilitates the aggregation of dis- *

tinct criteria, such as combining diversity with qual-  °

ity. This approach captures a more holistic notion ~*

of data value. Surrogate-based frameworks allow H H

for the pre-computation of complex heuristics or " bwemy Rmdom e olemt - Margn
diversity metrics (e.g., clustering in a fixed embed- Fig. 4. Top-5 used active learning methods.

ding space). This avoids the computational burden
of re-evaluating the target model at every step. Con-
versely, the training loop of the target model constrains surrogate-free methods. Therefore, they
are less likely to adopt complex multi-objective formulations that might disrupt training efficiency.

6.3 Pitfalls

6.3.1 Purpose

Among our surveyed works, 64 works clearly mentioned their purpose for using data-efficient
methods. 11 studies aim to reduce labeling cost, seeking to minimize manual annotation by lever-
aging unlabeled or synthetic data. 53 works target to reduce computational cost.

Pitfall 1: No labeling cost targeted works reported the difficulty of labeling their studied datasets.
Currently, multiple automatic data labeling tools [17, 48, 77] have been proposed with promising
results. If the work focuses on reducing data labeling cost, it is necessary to highlight why these
tools cannot precisely label the datasets. That is, justifying the trade-off between data labeling
difficulty and training cost is important.

Pitfall 2: 52 works did not clarify their purpose of using data-efficient methods. This purpose
highly affects the evaluation process of their proposed methods, as mentioned in Pitfall 1.

6.3.2 Baseline Consideration

Pitfall 3: 16% of works did not consider baselines from different types of methods.

Pitfall 4:Active learning is a representative sample-efficient model-training paradigm used in
conventional machine learning. Multiple active learning methods have been proposed, such as
Dropout-based active learning. These methods can be easily modified and applied to LLMs. However,
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we found that only 14 papers used active learning methods as baselines. Figure 4 shows the
frequency of active learning methods used in these 14 works, where Entropy-based sampling is the
predominant method.

6.3.3 Surrogate Cost

Pitfall 5: Integrating surrogate models into data selection pipelines introduces high computational
and storage costs. Despite the widespread adoption of this methodology, our review of 78 relevant
studies indicates that researchers frequently employ surrogates. However, only 17 of 78 surrogate-
based studies discussed the external cost caused by the surrogate model. This oversight is critical,
as recent evaluations [107, 116] reveal that the prohibitive computational cost of sophisticated
selection often renders it less computationally efficient than simple random baselines or training
on larger raw datasets.

6.3.4 Measurement

Pitfall 6: In addition to the pure capability (e.g., accuracy), other metrics, such as robustness
and security of LLMs, are also important for evaluation. However, only 44 conducted robustness
evaluations. Further analysis of the 44 papers reveals that the most commonly used robustness
metrics include: model robustness (18 papers), data robustness (17 papers), cross-domain/task
robustness (14 papers), hyperparameter robustness (6 papers), and instruction-following robustness
(5 papers), as illustrated in Figure 5.

Model robustness focuses on performance across
different model sizes and architectures, ensuring =
that a method maintains high performance when
transferred from smaller surrogate models to larger,
more complex ones. This helps verify that the data
selection is not overfit to a specific model architec- s
ture. Data robustness examines performance across i
varying data distributions and quantities, assess- 2 H H
ing the model’s stability (e.g., F1 score) when faced b : s Cross dominask sction oloving
with duplicate data, varying proportions, or out- Fig. 5. Top-5 most frequently used robustness
liers. A robust method should consistently outper- Mmetrics.
form baselines under different data conditions. Cross-
domain/task robustness emphasizes the model’s ability to generalize across different domains and
tasks, ensuring performance is maintained not only within the original domain but also in near-
domain and out-of-domain scenarios. Hyperparameter robustness assesses whether the method
remains effective despite changes in hyperparameters, such as learning rates or model scaling,

robust

indicating broader applicability. Instruction-following robustness evaluates how well the model can
adhere to instructions under noisy, complex, or sparse conditions, reflecting the reliability of the
method in dynamic environments.

6.4 Threats to Validity

Construct Threat. A primary threat lies in the potential miss of relevant studies due to the
limitations of keyword-based retrieval. As the terminology for data efficiency in LLMs is not yet fully
standardized, distinct communities may use varying nomenclatures (e.g., data selection versus data
pruning). To mitigate this, we constructed a comprehensive set of search strings combining model-
related terms with efficiency-related keywords. Furthermore, we applied bidirectional snowballing
through forward and backward citation searches, identifying 13 additional high-value papers. We
commit to maintaining our survey website to continuously gather future literature that is relevant
to our research. Internal Threat. The classification of data selection methods into Surrogate-Based
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and Surrogate-Free paradigms, as well as their sub-categorizations, involves a degree of subjective
judgment. Ambiguity may arise when a method exhibits hybrid characteristics, potentially leading
to classification errors. To mitigate this threat, we established a unified problem definition and strict
inclusion and exclusion criteria prior to data extraction. The paper selection followed a multi-stage
process, screening titles, venues, and abstracts before reviewing full texts to ensure alignment with
our scope. Furthermore, each author reviewed the papers involving classification to ensure the
reliability of the classification.

7 Opportunities

As the model parameter and data scale increase, data-efficient techniques become increasingly
important. There are multiple opportunities to facilitate this domain.

7.1 New Scenarios

Existing data selection research mainly focuses on a single LLM and QA tasks, other trending
scenarios should be considered. First, LLMs increasingly function as agents integrated with external
tools and long-horizon trajectories. Zhang et al. [130]introduced guideline effectiveness to quantify
the utility of data for agentic tasks. However, scalable selection methods for complex, multi-step
reasoning tasks remain under-explored. Future work should evaluate the quality of interaction
trajectories rather than isolated response pairs. Second, specific domains like code generation
require distinct evaluation strategies. The efficacy of data selection strategies varies significantly
across different data types. Hu et al. [40]showed that strategies effective for classification tasks
often fail in generative contexts. This demands domain-specific metrics.

7.2 Distribution Aware

Existing works largely treat data selection as a static matching problem, typically aiming to align
the training subset solely with a target scenario. We argue that this single-perspective approach
is limited. It ignores the complex distributional interplay between the original pre-trained model,
the target task, and the evolving training dynamics. Future frameworks must bridge source and
target distributions. Approaches that only match the target distribution often fail to optimize the
transition from the base model. Kang et al. [46] showed that such methods are suboptimal because
they ignore the pre-training distribution. Similarly, Zhang et al. [124] showed that data aligned
with the base model’s probability distribution outperforms generic high-quality data. Therefore,
future works must consider source and target distributions simultaneously. They should select
samples that maximize alighment while minimizing distributional shock to the base model.

Furthermore, methods must anticipate dynamic distributional shifts. Current methods often
overlook the dynamic nature of optimal distributions. Data optimal at the onset of fine-tuning may
become redundant as the model’s internal distribution shifts during training. Yu et al. [120] showed
that static selection fails to capture the shifting preferences of LLMs. Yang et al. [115] corroborated
this by introducing pace-adaptive learning, in which data difficulty evolves in real time. We argue
that a distribution-aware method must move beyond static curation. It requires a continuous,
feedback-driven process that anticipates shifts. This prevents the model from overfitting to a fixed
target distribution.

7.3 Multi-Objective Selection

First, only a few works consider integrating multiple evaluation metrics in their method design. In
addition to the pure capability of LLMs, other metrics, such as security and privacy, should also be
considered during the model optimization. That is, designing multi-objective selection methods is a
promising future research direction. Moreover, the construction of current data selection strategies
predominantly relies on isolated metrics, such as perplexity and embedding distance. Sometimes,
they combine them through rudimentary heuristics. This ad-hoc approach fails to address the
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complexity of LLM training. Robust data selection requires a formal multi-objective optimization
problem and explicitly navigating the Pareto frontiers between conflicting criteria.For example,
Fan et al. [26] identified that aggressive filtering for high-quality, domain-specific text tends to
homogenize the dataset. It collapses feature diversity and degrades general capabilities. Conversely,
prioritizing pure diversity often introduces noise. Therefore, future frameworks must advance
beyond linear score combinations and identify optimal trade-offs that maximize coverage without
sacrificing the signal-to-noise ratio.

Current research rarely treats the computational cost of selection as a primary objective. Yin et
al. [116] formally modeled the trade-off between selection cost and training efficiency. They showed
that sophisticated methods, such as those based on perplexity or gradients, often prove suboptimal
compared to simple lexical filters when the total budget is constrained. Future methods should
incorporate selection cost as a negative objective. This prioritizes lightweight, scalable filters over
expensive model-based scoring for massive datasets.

7.4 Theoretical Guarantee

Although existing methods often yield practical gains, they lack rigorous theoretical justification.
Yang et al. [112] and Zhou et al. [138] pioneered this direction. They established convergence
guarantees for specific selection algorithms, such as CRest and HYPERINF. Following these works,
future research is encouraged to build rigorous theoretical foundations for data subset selection.
It needs to establish certifiable bounds on permissible data reduction without exceeding defined
error thresholds. Establishing these guarantees is challenging because the optimization landscape
of LLMs is non-convex. Standard CoreSet theories typically assume convex loss functions and do
not hold here. Therefore, focusing on approximating data point influence in non-convex settings is
a promising research direction.

8 Conclusion

We comprehensively surveyed 116 works on data-efficient LLM training. This survey unified
techniques across pre-training and fine-tuning phases into surrogate-based and surrogate-free ap-
proaches. We analyzed how these methods identify high-utility data to maximize model performance
while minimizing computational costs. Furthermore, we outlined critical research opportunities for
theoretical metrics and standardized evaluation. This survey aims to assist researchers in navigating
the trade-offs between data quantity and utility for LLM construction. The entire project is available
at https://github.com/Data-centric-LLM/Data-Efficient-LLM-Construction.
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